HEAL DSpace

The BEM for plates of variable thickness on nonlinear biparametric elastic foundation. An analog equation solution

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Katsikadelis, JT en
dc.contributor.author Yiotis, AJ en
dc.date.accessioned 2014-03-01T01:19:35Z
dc.date.available 2014-03-01T01:19:35Z
dc.date.issued 2003 en
dc.identifier.issn 0022-0833 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/15596
dc.subject Analog equation en
dc.subject Boundary elements en
dc.subject Nonlinear foundation en
dc.subject Plates en
dc.subject Variable thickness en
dc.subject.classification Engineering, Multidisciplinary en
dc.subject.classification Mathematics, Interdisciplinary Applications en
dc.subject.other Elasticity en
dc.subject.other Integration en
dc.subject.other Partial differential equations en
dc.subject.other Plates (structural components) en
dc.subject.other Stiffness en
dc.subject.other Structural loads en
dc.subject.other Analog equation method en
dc.subject.other Boundary element method en
dc.subject.other boundary element method en
dc.subject.other plate en
dc.title The BEM for plates of variable thickness on nonlinear biparametric elastic foundation. An analog equation solution en
heal.type journalArticle en
heal.identifier.primary 10.1023/A:1025074231624 en
heal.identifier.secondary http://dx.doi.org/10.1023/A:1025074231624 en
heal.language English en
heal.publicationDate 2003 en
heal.abstract The BEM is developed for the analysis of plates with variable thickness resting on a nonlinear biparametric elastic foundation. The presented solution is achieved using the Analog Equation Method (AEM). According to the AEM the fourth-order partial differential equation with variable coefficients describing the response of the plate is converted to an equivalent linear problem for a plate with constant stiffness not resting on foundation and subjected only to an 'appropriate' fictitious load under the same boundary conditions. The fictitious load is established using a technique based on the BEM and the solution of the actual problem is obtained from the known integral representation of the solution of the substitute problem, which is derived using the static fundamental solution of the biharmonic equation. The method is boundary-only in the sense that the discretization and the integration are performed only on the boundary. To illustrate the method and its efficiency, plates of various shapes are analyzed with linear and quadratic plate thickness variation laws resting on a nonlinear biparametric elastic foundation. en
heal.publisher KLUWER ACADEMIC PUBL en
heal.journalName Journal of Engineering Mathematics en
dc.identifier.doi 10.1023/A:1025074231624 en
dc.identifier.isi ISI:000184577200009 en
dc.identifier.volume 46 en
dc.identifier.issue 3-4 en
dc.identifier.spage 313 en
dc.identifier.epage 330 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής