HEAL DSpace

The linear sampling method for non-absorbing penetrable elastic bodies

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Charalambopoulos, A en
dc.contributor.author Gintides, D en
dc.contributor.author Kiriaki, K en
dc.date.accessioned 2014-03-01T01:19:37Z
dc.date.available 2014-03-01T01:19:37Z
dc.date.issued 2003 en
dc.identifier.issn 0266-5611 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/15610
dc.subject Linear Sampling Method en
dc.subject.classification Mathematics, Applied en
dc.subject.classification Physics, Mathematical en
dc.subject.other Acoustic noise en
dc.subject.other Acoustic wave transmission en
dc.subject.other Algorithms en
dc.subject.other Boundary conditions en
dc.subject.other Boundary element method en
dc.subject.other Elasticity en
dc.subject.other Green's function en
dc.subject.other Image reconstruction en
dc.subject.other Inverse problems en
dc.subject.other Sampling en
dc.subject.other Boundedness en
dc.subject.other Acoustic wave scattering en
dc.title The linear sampling method for non-absorbing penetrable elastic bodies en
heal.type journalArticle en
heal.identifier.primary 10.1088/0266-5611/19/3/305 en
heal.identifier.secondary http://dx.doi.org/10.1088/0266-5611/19/3/305 en
heal.language English en
heal.publicationDate 2003 en
heal.abstract In this paper the linear sampling method for the shape reconstruction of a penetrable non-dissipative scatterer in two-dimensional linear elasticity is examined. We formulate the governing differential equations of the problem in dyadic form in order to acquire a symmetric and uniform representation for the underlying elastic fields. The corresponding far-field operator is defined in the appropriate space setting. Assuming that the inclusion has non-absorbing behaviour, we consider this problem as a degenerate case of a non-dissipative anisotropic inclusion. Results for the existence and uniqueness of the weak solution of the interior transmission problem are obtained. In this framework the main theorem for the shape reconstruction for the transmission case is established. As in the previous works referring to the linear sampling method in acoustics and linear elasticity, the inversion scheme which is proposed is based on the unboundedness of the solution of an equation of the first kind having as the known term the far-field of the free-space Green dyadic, generated by a source inside the inclusion approaching the boundary. Numerical results are presented for different inclusion geometries, assuring the simple and efficient implementation of the algorithm, using synthetic data derived from the boundary element method. en
heal.publisher IOP PUBLISHING LTD en
heal.journalName Inverse Problems en
dc.identifier.doi 10.1088/0266-5611/19/3/305 en
dc.identifier.isi ISI:000183838100005 en
dc.identifier.volume 19 en
dc.identifier.issue 3 en
dc.identifier.spage 549 en
dc.identifier.epage 561 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής