HEAL DSpace

The Mode III Crack Problem in Microstructured Solids Governed by Dipolar Gradient Elasticity: Static and Dynamic Analysis

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Georgiadis, HG en
dc.date.accessioned 2014-03-01T01:19:37Z
dc.date.available 2014-03-01T01:19:37Z
dc.date.issued 2003 en
dc.identifier.issn 0021-8936 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/15612
dc.subject Microstructures en
dc.subject Static and Dynamic Analysis en
dc.subject.classification Mechanics en
dc.subject.other Boundary value problems en
dc.subject.other Elastic moduli en
dc.subject.other Elasticity en
dc.subject.other Fracture mechanics en
dc.subject.other Integration en
dc.subject.other Microstructure en
dc.subject.other Stiffness en
dc.subject.other Stresses en
dc.subject.other Dipolar gradient elasticity en
dc.subject.other Cracks en
dc.title The Mode III Crack Problem in Microstructured Solids Governed by Dipolar Gradient Elasticity: Static and Dynamic Analysis en
heal.type journalArticle en
heal.identifier.primary 10.1115/1.1574061 en
heal.identifier.secondary http://dx.doi.org/10.1115/1.1574061 en
heal.language English en
heal.publicationDate 2003 en
heal.abstract This study aims at determining the elastic stress and displacement fields around a crack in a microstructured body under a remotely applied loading of the antiplane shear (mode III) type. The material microstructure is modeled through the Mindlin-Green-Rivlin dipolar gradient theory (or strain-gradient theory of grade two). A simple but yet rigorous version of this generalized continuum theory is taken here by considering an isotropic linear expression of the elastic strain-energy density in antiplane shearing that involves only two material constants (the shear modulus and the so-called gradient coefficient). In particular, the strain-energy density function, besides its dependence upon the standard strain terms, depends also on strain gradients. This expression derives from form II of Mindlin's theory, a form that is appropriate for a gradient formulation with no couple-stress effects (in this case the strain-energy density function does not contain any rotation gradients). Here, both the formulation of the problem and the solution method are exact and lead to results for the near-tip field showing significant departure from the predictions of the classical fracture mechanics. In view of these results, it seems that the conventional fracture mechanics is inadequate to analyze crack problems in microstructured materials. Indeed, the present results suggest that the stress distribution ahead of the tip exhibits a local maximum that is bounded. Therefore, this maximum value may serve as a measure of the critical stress level at which further advancement of the crack may occur. Also, in the vicinity of the crack tip, the crack-face displacement closes more smoothly as compared to the classical results. The latter can be explained physically since materials with microstructure behave in a more rigid way (having increased stiffness) as compared to materials without microstructure (i.e., materials governed by classical continuum mechanics). The new formulation of the crack problem required also new extended definitions for the J-integral and the energy release rate. It is shown that these quantities can be determined through the use of distribution (generalized function) theory. The boundary value problem was attacked by both the asymptotic Williams technique and the exact Wiener-Hopf technique. Both static and time-harmonic dynamic analyses are provided. en
heal.publisher ASME-AMER SOC MECHANICAL ENG en
heal.journalName Journal of Applied Mechanics, Transactions ASME en
dc.identifier.doi 10.1115/1.1574061 en
dc.identifier.isi ISI:000185676500007 en
dc.identifier.volume 70 en
dc.identifier.issue 4 en
dc.identifier.spage 517 en
dc.identifier.epage 530 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής