HEAL DSpace

The periodic Euler-Bernoulli equation

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Papanicolaou, VG en
dc.date.accessioned 2014-03-01T01:19:37Z
dc.date.available 2014-03-01T01:19:37Z
dc.date.issued 2003 en
dc.identifier.issn 0002-9947 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/15617
dc.subject Algebraic/geometric multiplicity en
dc.subject Beam operator en
dc.subject Euler-Bernoulli equation for the vibrating beam en
dc.subject Floquet spectrum en
dc.subject Hill operator en
dc.subject Multipoint eigenvalue problem en
dc.subject Pseudospectrum en
dc.subject.classification Mathematics en
dc.subject.other MATRIX HILLS EQUATION en
dc.subject.other SCHRODINGER-OPERATORS en
dc.subject.other ANALYTIC PROPERTIES en
dc.subject.other ISOSPECTRAL SETS en
dc.subject.other SPECTRAL THEORY en
dc.subject.other INVERSE PROBLEM en
dc.subject.other VIBRATING BEAM en
dc.subject.other TRACE FORMULAS en
dc.subject.other SYSTEMS en
dc.subject.other POTENTIALS en
dc.title The periodic Euler-Bernoulli equation en
heal.type journalArticle en
heal.identifier.primary 10.1090/S0002-9947-03-03315-4 en
heal.identifier.secondary http://dx.doi.org/10.1090/S0002-9947-03-03315-4 en
heal.language English en
heal.publicationDate 2003 en
heal.abstract We continue the study of the Floquet (spectral) theory of the beam equation, namely the fourth-order eigenvalue problem [a(x) u"(x)]" = lambdarho(x) u(x), -infinity < x < infinity, where the functions a and rho are periodic and strictly positive. This equation models the transverse vibrations of a thin straight ( periodic) beam whose physical characteristics are described by a and rho. Here we develop a theory analogous to the theory of the Hill operator -(d/dx)(2) + q(x). We first review some facts and notions from our previous works, including the concept of the pseudospectrum, or psi-spectrum. Our new analysis begins with a detailed study of the zeros of the function F(lambda; k), for any given "quasimomentum" k is an element of C, where F(lambda; k) = 0 is the Floquet-Bloch variety of the beam equation ( the Hill quantity corresponding to F(lambda; k) is Delta(lambda) -2 cos(kb), where Delta(lambda) is the discriminant and b the period of q). We show that the multiplicity m(lambda*) of any zero lambda* of F(lambda; k) can be one or two and m(lambda*) = 2 (for some k) if and only if lambda* is also a zero of another entire function D(lambda), independent of k. Furthermore, we show that D(lambda) has exactly one zero in each gap of the spectrum and two zeros ( counting multiplicities) in each psi-gap. If lambda* is a double zero of F(lambda; k), it may happen that there is only one Floquet solution with quasimomentum k; thus, there are exceptional cases where the algebraic and geometric multiplicities do not agree. Next we show that if (alpha; beta) is an open psi-gap of the pseudospectrum (i.e., alpha < &beta;), then the Floquet matrix T(&lambda;) has a specific Jordan anomaly at &lambda; = &alpha; and &lambda; = &beta;. We then introduce a multipoint (Dirichlet-type) eigenvalue problem which is the analogue of the Dirichlet problem for the Hill equation. We denote by {&mu;(n)}(n&ISIN;Z) the eigenvalues of this multipoint problem and show that {&mu;(n)}(n&ISIN;Z) is also characterized as the set of values of &lambda; for which there is a proper Floquet solution f(x; &lambda;) such that f(0; &lambda;) = 0. We also show ( Theorem 7) that each gap of the L-2(R)-spectrum contains exactly one &mu;(n) and each &psi;-gap of the pseudospectrum contains exactly two &mu;(n)'s, counting multiplicities. Here when we say "gap" or "&psi;-gap" we also include the endpoints (so that when two consecutive bands or - bands touch, the in-between collapsed gap, or &psi;-gap, is a point). We believe that {&mu;(n)}(n&ISIN;Z) can be used to formulate the associated inverse spectral problem. As an application of Theorem 7, we show that if &nu;* is a collapsed ("closed") &psi;-gap, then the Floquet matrix T(&nu;*) is diagonalizable. Some of the above results were conjectured in our previous works. However, our conjecture that if all the &psi;-gaps are closed, then the beam operator is the square of a second-order (Hill-type) operator, is still open. en
heal.publisher AMER MATHEMATICAL SOC en
heal.journalName Transactions of the American Mathematical Society en
dc.identifier.doi 10.1090/S0002-9947-03-03315-4 en
dc.identifier.isi ISI:000183810800015 en
dc.identifier.volume 355 en
dc.identifier.issue 9 en
dc.identifier.spage 3727 en
dc.identifier.epage 3759 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής