dc.contributor.author |
Psarrakos, PJ |
en |
dc.contributor.author |
Tsatsomeros, MJ |
en |
dc.date.accessioned |
2014-03-01T01:19:37Z |
|
dc.date.available |
2014-03-01T01:19:37Z |
|
dc.date.issued |
2003 |
en |
dc.identifier.issn |
0024-3795 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/15619 |
|
dc.subject |
Almost skew-symmetric matrix |
en |
dc.subject |
Levinger's transformation |
en |
dc.subject |
Perron value |
en |
dc.subject |
Perron vector |
en |
dc.subject |
Q-Numerical range |
en |
dc.subject |
Tournament |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.title |
The Perron eigenspace of nonnegative almost skew-symmetric matrices and Levinger's transformation |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/S0024-3795(02)00439-1 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/S0024-3795(02)00439-1 |
en |
heal.language |
English |
en |
heal.publicationDate |
2003 |
en |
heal.abstract |
Let A be a nonnegative square matrix whose symmetric part has rank one. Tournament matrices are of this type up to a positive shift by 1/2I. When the symmetric part of A is irreducible, the Perron value and the left and right Perron vectors of L(A, alpha) = (1 - alpha)A + alphaA(t) are studied and compared as functions of alpha is an element of [0, 1/2]. In particular, upper bounds are obtained for both the Perron value and its derivative as functions of the parameter a via the notion of the q-numerical range. (C) 2002 Elsevier Science Inc. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE INC |
en |
heal.journalName |
Linear Algebra and Its Applications |
en |
dc.identifier.doi |
10.1016/S0024-3795(02)00439-1 |
en |
dc.identifier.isi |
ISI:000180416900004 |
en |
dc.identifier.volume |
360 |
en |
dc.identifier.spage |
43 |
en |
dc.identifier.epage |
57 |
en |