dc.contributor.author |
Polyrakis, IA |
en |
dc.date.accessioned |
2014-03-01T01:19:38Z |
|
dc.date.available |
2014-03-01T01:19:38Z |
|
dc.date.issued |
2003 |
en |
dc.identifier.issn |
1385-1292 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/15625 |
|
dc.subject |
banach lattice |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
PORTFOLIO INSURANCE |
en |
dc.subject.other |
BANACH-SPACES |
en |
dc.subject.other |
BASES |
en |
dc.subject.other |
L1 |
en |
dc.title |
The Structure of Lattice-Subspaces |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1023/A:1025872101176 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1023/A:1025872101176 |
en |
heal.language |
English |
en |
heal.publicationDate |
2003 |
en |
heal.abstract |
In Polyrakis (1983; Math. Proc. Cambridge Phil. Soc. 94, 519) it is proved that each infinite-dimensional, closed lattice-subspace of ℓ1 is order-isomorphic to ℓ1 and in Polyrakis (1987; Math. Anal. Appl. 184, 1) that each separable Banach lattice is order isomorphic to a closed lattice-subspace of C [0, 1]. Therefore ℓ1 contains only one lattice-subspace but C [0, 1] contains all the separable Banach lattices. In the first section of this article we study the kind of the order embeddability of a separable Banach lattice in C[0, 1]. We show that the AM spaces have the ""best"" behavior and the AL-spaces the ""worst"". In the second section we prove that the closure of a lattice-subspace is not necessarily a lattice-subspace and in the least one we study lattice-subspaces with positive bases. |
en |
heal.publisher |
KLUWER ACADEMIC PUBL |
en |
heal.journalName |
Positivity |
en |
dc.identifier.doi |
10.1023/A:1025872101176 |
en |
dc.identifier.isi |
ISI:000185516300002 |
en |
dc.identifier.volume |
7 |
en |
dc.identifier.issue |
1-2 |
en |
dc.identifier.spage |
23 |
en |
dc.identifier.epage |
32 |
en |