HEAL DSpace

The Structure of Lattice-Subspaces

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Polyrakis, IA en
dc.date.accessioned 2014-03-01T01:19:38Z
dc.date.available 2014-03-01T01:19:38Z
dc.date.issued 2003 en
dc.identifier.issn 1385-1292 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/15625
dc.subject banach lattice en
dc.subject.classification Mathematics en
dc.subject.other PORTFOLIO INSURANCE en
dc.subject.other BANACH-SPACES en
dc.subject.other BASES en
dc.subject.other L1 en
dc.title The Structure of Lattice-Subspaces en
heal.type journalArticle en
heal.identifier.primary 10.1023/A:1025872101176 en
heal.identifier.secondary http://dx.doi.org/10.1023/A:1025872101176 en
heal.language English en
heal.publicationDate 2003 en
heal.abstract In Polyrakis (1983; Math. Proc. Cambridge Phil. Soc. 94, 519) it is proved that each infinite-dimensional, closed lattice-subspace of ℓ1 is order-isomorphic to ℓ1 and in Polyrakis (1987; Math. Anal. Appl. 184, 1) that each separable Banach lattice is order isomorphic to a closed lattice-subspace of C [0, 1]. Therefore ℓ1 contains only one lattice-subspace but C [0, 1] contains all the separable Banach lattices. In the first section of this article we study the kind of the order embeddability of a separable Banach lattice in C[0, 1]. We show that the AM spaces have the ""best"" behavior and the AL-spaces the ""worst"". In the second section we prove that the closure of a lattice-subspace is not necessarily a lattice-subspace and in the least one we study lattice-subspaces with positive bases. en
heal.publisher KLUWER ACADEMIC PUBL en
heal.journalName Positivity en
dc.identifier.doi 10.1023/A:1025872101176 en
dc.identifier.isi ISI:000185516300002 en
dc.identifier.volume 7 en
dc.identifier.issue 1-2 en
dc.identifier.spage 23 en
dc.identifier.epage 32 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής