HEAL DSpace

Tunneling dissociation from a double well via path integrals

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Douvropoulos, TG en
dc.contributor.author Nicolaides, CA en
dc.date.accessioned 2014-03-01T01:19:40Z
dc.date.available 2014-03-01T01:19:40Z
dc.date.issued 2003 en
dc.identifier.issn 0021-9606 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/15643
dc.subject.classification Physics, Atomic, Molecular & Chemical en
dc.subject.other Approximation theory en
dc.subject.other Dissociation en
dc.subject.other Electron tunneling en
dc.subject.other Green's function en
dc.subject.other Numerical methods en
dc.subject.other Oscillations en
dc.subject.other Perturbation techniques en
dc.subject.other Double well potential en
dc.subject.other Path integrals en
dc.subject.other Tunneling dissociation en
dc.subject.other Quantum theory en
dc.title Tunneling dissociation from a double well via path integrals en
heal.type journalArticle en
heal.identifier.primary 10.1063/1.1612482 en
heal.identifier.secondary http://dx.doi.org/10.1063/1.1612482 en
heal.language English en
heal.publicationDate 2003 en
heal.abstract It is shown how the semiclassical theory of path integrals can be implemented in a practical manner for the analysis of a potential that combines the two-state system of a double well potential (DWP) with decay into a continuous spectrum. This potential may correspond to a variety of physical situations in physics and chemistry. The structure of the formalism and of the results is such that it allows computation not only for analytic but also for numerically given potentials. The central theme is the determination of the energy-dependent Green's function, which is shown to consist of a regular part and a part containing simple and double complex poles. These poles represent the position of the energy levels, as well as the energy widths and shifts due to the interaction with the continuous spectrum. When applied to the bound DWP without tunneling, the theory is shown to reduce in certain limits to known results from the Jeffreys-Wentzel-Kiamers-Bhrillouin approximation. If the system is taken to be prepared in the first well, the interactions with the remaining of the potential lead to two types of transition rates. One represents the transient motion toward a virtual equilibrium state of the DWP. It emerges as a positive imaginary part of the self-energy. The other represents the decay into the continuum and emerges as a negative imaginary part of the pole. Comparison of the two mechanisms of nonstationarity is made for different magnitudes of the second barrier relative to the first one. Since the system decays to the continuum while oscillating, the theory obtains a correction to the frequency of oscillation in the DWP due to the interaction with the continuum. This phenomenon is observable in real two-state systems, if an external perturbation which affects mainly one state converts it into a resonance state. (C) 2003 American Institute of Physics. en
heal.publisher AMER INST PHYSICS en
heal.journalName Journal of Chemical Physics en
dc.identifier.doi 10.1063/1.1612482 en
dc.identifier.isi ISI:000185865500005 en
dc.identifier.volume 119 en
dc.identifier.issue 16 en
dc.identifier.spage 8235 en
dc.identifier.epage 8249 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής