dc.contributor.author |
Gasinski, L |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T01:19:40Z |
|
dc.date.available |
2014-03-01T01:19:40Z |
|
dc.date.issued |
2003 |
en |
dc.identifier.issn |
0033-3883 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/15646 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0042526139&partnerID=40&md5=230b8d54ff9eccc509159dcd08e5f8d8 |
en |
dc.subject |
Coercive operator |
en |
dc.subject |
First eigen-value |
en |
dc.subject |
Hemivariational inequalities |
en |
dc.subject |
p-Laplacian |
en |
dc.subject |
Penalty function |
en |
dc.subject |
Principal eigenfunction |
en |
dc.subject |
Pseudomonotone operator |
en |
dc.subject |
Resonance |
en |
dc.subject |
Truncation map |
en |
dc.subject |
Upper and lower solutions |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
EIGENVALUE PROBLEMS |
en |
dc.subject.other |
ELLIPTIC-EQUATIONS |
en |
dc.title |
Two bounded solutions of opposite sign for nonlinear hemivariational inequalities at resonance |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
2003 |
en |
heal.abstract |
In this paper we study quasilinear hemivariational inequalities at resonance at the first eigenvalue of the p-Laplacian. For such problems we establish the existence of at least two bounded solutions: one positive and the other negative. Our approach is based on the method of upper-lower solutions and on techniques from the theory of nonlinear operator of monotone type. |
en |
heal.publisher |
KOSSUTH LAJOS TUDOMANYEGYETEM |
en |
heal.journalName |
Publicationes Mathematicae |
en |
dc.identifier.isi |
ISI:000188494600003 |
en |
dc.identifier.volume |
63 |
en |
dc.identifier.issue |
1-2 |
en |
dc.identifier.spage |
29 |
en |
dc.identifier.epage |
49 |
en |