dc.contributor.author |
Bollas, GM |
en |
dc.contributor.author |
Papadokonstadakis, S |
en |
dc.contributor.author |
Michalopoulos, J |
en |
dc.contributor.author |
Arampatzis, G |
en |
dc.contributor.author |
Lappas, AA |
en |
dc.contributor.author |
Vasalos, IA |
en |
dc.contributor.author |
Lygeros, A |
en |
dc.date.accessioned |
2014-03-01T01:19:41Z |
|
dc.date.available |
2014-03-01T01:19:41Z |
|
dc.date.issued |
2003 |
en |
dc.identifier.issn |
0255-2701 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/15658 |
|
dc.subject |
FCC kinetics |
en |
dc.subject |
Fluid catalytic cracking |
en |
dc.subject |
Hybrid modeling |
en |
dc.subject |
Neural networks |
en |
dc.subject |
Pilot to commercial unit scale up |
en |
dc.subject |
Process modeling |
en |
dc.subject |
Riser hydrodynamics |
en |
dc.subject.classification |
Energy & Fuels |
en |
dc.subject.classification |
Engineering, Chemical |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Neural networks |
en |
dc.subject.other |
Petroleum refineries |
en |
dc.subject.other |
Pilot plants |
en |
dc.subject.other |
Oil refinery |
en |
dc.subject.other |
Fluid catalytic cracking |
en |
dc.subject.other |
coke |
en |
dc.subject.other |
catalytic cracking |
en |
dc.subject.other |
hydrodynamics |
en |
dc.subject.other |
industrial plant |
en |
dc.subject.other |
kinetics |
en |
dc.subject.other |
neural network |
en |
dc.subject.other |
pilot plant |
en |
dc.subject.other |
artificial neural network |
en |
dc.subject.other |
fluid catalytic cracking |
en |
dc.subject.other |
Greece |
en |
dc.subject.other |
model |
en |
dc.subject.other |
oil industry |
en |
dc.subject.other |
petrochemical industry |
en |
dc.subject.other |
scale up |
en |
dc.title |
Using hybrid neural networks in scaling up an FCC model from a pilot plant to an industrial unit |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/S0255-2701(02)00206-4 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/S0255-2701(02)00206-4 |
en |
heal.language |
English |
en |
heal.publicationDate |
2003 |
en |
heal.abstract |
The scaling up of a pilot plant fluid catalytic cracking (FCC) model to an industrial unit with use of artificial neural networks is presented in this paper. FCC is one of the most important oil refinery processes. Due to its complexity the modeling of the FCC poses great challenge. The pilot plant model is capable of predicting the weight percent of conversion and coke yield of an FCC unit. This work is focused in determining the optimum hybrid approach, in order to improve the accuracy of the pilot plant model. Industrial data from a Greek petroleum refinery were used to develop and validate the models. The hybrid models developed are compared with the pilot plant model and a pure neural network model. The results show that the hybrid approach is able to increase the accuracy of prediction especially with data that is out of the model range. Furthermore, the hybrid models are easier to interpret and analyze. (C) 2003 Elsevier Science B.V. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE SA |
en |
heal.journalName |
Chemical Engineering and Processing: Process Intensification |
en |
dc.identifier.doi |
10.1016/S0255-2701(02)00206-4 |
en |
dc.identifier.isi |
ISI:000183738500010 |
en |
dc.identifier.volume |
42 |
en |
dc.identifier.issue |
8-9 |
en |
dc.identifier.spage |
697 |
en |
dc.identifier.epage |
713 |
en |