dc.contributor.author |
Chaviaropoulos, PK |
en |
dc.contributor.author |
Soerensen, NN |
en |
dc.contributor.author |
Hansen, MOL |
en |
dc.contributor.author |
Nikolaou, IG |
en |
dc.contributor.author |
Aggelis, KA |
en |
dc.contributor.author |
Johansen, J |
en |
dc.contributor.author |
Gaunaa, M |
en |
dc.contributor.author |
Hambraus, T |
en |
dc.contributor.author |
Von Geyr, H |
en |
dc.contributor.author |
Hirsch, Ch |
en |
dc.contributor.author |
Shun, K |
en |
dc.contributor.author |
Voutsinas, SG |
en |
dc.contributor.author |
Tzabiras, G |
en |
dc.contributor.author |
Perivolaris, Y |
en |
dc.contributor.author |
Dyrmose, SZ |
en |
dc.date.accessioned |
2014-03-01T01:19:41Z |
|
dc.date.available |
2014-03-01T01:19:41Z |
|
dc.date.issued |
2003 |
en |
dc.identifier.issn |
1095-4244 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/15661 |
|
dc.subject |
Aeroelastic stability |
en |
dc.subject |
Aeroelasticity |
en |
dc.subject |
Navier-Stokes solvers |
en |
dc.subject |
Wind turbines |
en |
dc.subject.classification |
Energy & Fuels |
en |
dc.subject.classification |
Engineering, Mechanical |
en |
dc.subject.other |
Aerodynamics |
en |
dc.subject.other |
Computational fluid dynamics |
en |
dc.subject.other |
Navier Stokes equations |
en |
dc.subject.other |
Rotors |
en |
dc.subject.other |
Turbomachine blades |
en |
dc.subject.other |
Viscosity |
en |
dc.subject.other |
Aeroelastic stability |
en |
dc.subject.other |
Aeroelatsic effects |
en |
dc.subject.other |
Navier-Stokes solvers |
en |
dc.subject.other |
Viscous effects |
en |
dc.subject.other |
Wind turbines |
en |
dc.subject.other |
aeroelasticity |
en |
dc.subject.other |
blade |
en |
dc.subject.other |
Navier-Stokes equations |
en |
dc.subject.other |
unsteady flow |
en |
dc.subject.other |
viscosity |
en |
dc.subject.other |
wind turbine |
en |
dc.title |
Viscous and aeroelastic effects on wind turbine blades. the VISCEL project. Part II: Aeroelastic stability investigations |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1002/we.101 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1002/we.101 |
en |
heal.language |
English |
en |
heal.publicationDate |
2003 |
en |
heal.abstract |
The recent introduction of ever larger wind turbines poses new challenges with regard to understanding the mechanisms of unsteady flow-structure interaction. An important aspect of the problem is the aeroelastic stability of the wind turbine blades, especially in the case of combined flap/lead-lag vibrations in the stall regime. Given the limited experimental information available in this field, the use of CFD techniques and state-of-the-art viscous flow solvers provides an invaluable alternative towards the identification of the underlying physics and the development and validation of sound engineering-type aeroelastic models. Navier-Stakes-based aeroelastic stability analysis of individual blade sections subjected to combined pitch/flap or flap/lead-lag motion has been attempted by the present consortium in the framework of the concluded VISCEL JOR3-CT98-0208 Joule III project. Copyright © 2003 John Wiley & Sons, Ltd. |
en |
heal.publisher |
JOHN WILEY & SONS LTD |
en |
heal.journalName |
Wind Energy |
en |
dc.identifier.doi |
10.1002/we.101 |
en |
dc.identifier.isi |
ISI:000187397700006 |
en |
dc.identifier.volume |
6 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
387 |
en |
dc.identifier.epage |
403 |
en |