dc.contributor.author |
Sinopoulos, P |
en |
dc.date.accessioned |
2014-03-01T01:19:42Z |
|
dc.date.available |
2014-03-01T01:19:42Z |
|
dc.date.issued |
2003 |
en |
dc.identifier.issn |
00019054 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/15671 |
|
dc.subject |
Commuting matrices |
en |
dc.subject |
D'Alembert's functional equation |
en |
dc.subject |
Matrix-valued functions |
en |
dc.subject |
Simultaneous triangularization |
en |
dc.subject |
Wilson's functional equation |
en |
dc.title |
Wilson's functional equation in dimension 3 |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s00010-003-2680-z |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s00010-003-2680-z |
en |
heal.publicationDate |
2003 |
en |
heal.abstract |
We determine the general solution of the functional equation f(x + y) + f(x - y) = A(y) f(x) (x, y ∈ G), where G is a 2-divisible abelian group, A is a 3 × 3 matrix-valued function and f is a vector-valued function with linearly independent components. Using this result we solve the scalar equation f(x + y) + f(x - y) = g1(x)h1(y) + g2(x)h 2(y) + g3(x)h3(y) (x, y ∈ G). |
en |
heal.journalName |
Aequationes Mathematicae |
en |
dc.identifier.doi |
10.1007/s00010-003-2680-z |
en |
dc.identifier.volume |
66 |
en |
dc.identifier.issue |
1-2 |
en |
dc.identifier.spage |
164 |
en |
dc.identifier.epage |
179 |
en |