HEAL DSpace

A clustering method based on boosting

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Frossyniotis, D en
dc.contributor.author Likas, A en
dc.contributor.author Stafylopatis, A en
dc.date.accessioned 2014-03-01T01:19:42Z
dc.date.available 2014-03-01T01:19:42Z
dc.date.issued 2004 en
dc.identifier.issn 0167-8655 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/15678
dc.subject Ensemble clustering en
dc.subject Partitions schemes en
dc.subject Unsupervised learning en
dc.subject.classification Computer Science, Artificial Intelligence en
dc.subject.other Algorithms en
dc.subject.other Data reduction en
dc.subject.other Iterative methods en
dc.subject.other Problem solving en
dc.subject.other Quality assurance en
dc.subject.other Boosting en
dc.subject.other Clustering en
dc.subject.other Pattern recognition en
dc.subject.other image classification en
dc.title A clustering method based on boosting en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.patrec.2003.12.018 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.patrec.2003.12.018 en
heal.language English en
heal.publicationDate 2004 en
heal.abstract It is widely recognized that the boosting methodology provides superior results for classification problems. In this paper, we propose the boost-clustering algorithm which constitutes a novel clustering methodology that exploits the general principles of boosting in order to provide a consistent partitioning of a dataset. The boost-clustering algorithm is a multi-clustering method. At each boosting iteration, a new training set is created using weighted random sampling from the original dataset and a simple clustering algorithm (e.g. k-means) is applied to provide a new data partitioning. The final clustering solution is produced by aggregating the multiple clustering results through weighted voting. Experiments on both artificial and real-world data sets indicate that boost-clustering provides solutions of improved quality. (C) 2004 Elsevier B.V. All rights reserved. en
heal.publisher ELSEVIER SCIENCE BV en
heal.journalName Pattern Recognition Letters en
dc.identifier.doi 10.1016/j.patrec.2003.12.018 en
dc.identifier.isi ISI:000220572900004 en
dc.identifier.volume 25 en
dc.identifier.issue 6 en
dc.identifier.spage 641 en
dc.identifier.epage 654 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής