HEAL DSpace

A Combined Fuzzy-Neural Network Model for Non-Linear Prediction of 3-D Rendering Workload in Grid Computing

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Doulamis, ND en
dc.contributor.author Doulamis, AD en
dc.contributor.author Panagakis, A en
dc.contributor.author Dolkas, K en
dc.contributor.author Varvarigou, TA en
dc.contributor.author Varvarigos, E en
dc.date.accessioned 2014-03-01T01:19:42Z
dc.date.available 2014-03-01T01:19:42Z
dc.date.issued 2004 en
dc.identifier.issn 10834419 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/15680
dc.subject Grid computing en
dc.subject Neural networks en
dc.subject Three-dimensional (3-D) rendering en
dc.subject Workload prediction en
dc.subject.other Algorithms en
dc.subject.other Computation theory en
dc.subject.other Functions en
dc.subject.other Image processing en
dc.subject.other Mathematical models en
dc.subject.other Neural networks en
dc.subject.other Nonlinear systems en
dc.subject.other Problem solving en
dc.subject.other Quality of service en
dc.subject.other Queueing networks en
dc.subject.other Ray tracing en
dc.subject.other Resource allocation en
dc.subject.other Grid computing en
dc.subject.other Three-dimensional (3-D) rendering en
dc.subject.other Workload prediction en
dc.subject.other Fuzzy sets en
dc.title A Combined Fuzzy-Neural Network Model for Non-Linear Prediction of 3-D Rendering Workload in Grid Computing en
heal.type journalArticle en
heal.identifier.primary 10.1109/TSMCB.2003.822282 en
heal.identifier.secondary http://dx.doi.org/10.1109/TSMCB.2003.822282 en
heal.publicationDate 2004 en
heal.abstract Implementation of a commercial application to a grid infrastructure introduces new challenges in managing the quality-of-service (QoS) requirements, most stem from the fact that negotiation on QoS between the user and the service provider should strictly be satisfied. An interesting commercial application with a wide impact on a variety of fields, which can benefit from the computational grid technologies, is three-dimensional (3-D) rendering. In order to implement, however, 3-D rendering to a grid infrastructure, we should develop appropriate scheduling and resource allocation mechanisms so that the negotiated (QoS) requirements are met. Efficient scheduling schemes require modeling and prediction of rendering workload. In this paper workload prediction is addressed based on a combined fuzzy classification and neural network model. Initially, appropriate descriptors are extracted to represent the synthetic world, The descriptors are obtained by parsing RIB formatted files, which provides a general structure for describing computer-generated images. Fuzzy classification is used for organizing rendering descriptor so that a reliable representation is accomplished which increases the prediction accuracy. Neural network performs workload prediction by modeling the nonlinear input-output relationship between rendering descriptors and the respective computational complexity. To increase prediction accuracy, a constructive algorithm is adopted in this paper to train the neural network so that network weights and size are simultaneously estimated. Then, a grid scheduler scheme is proposed to estimate the queuing order that the tasks should be executed and the most appopriate processor assignment so that the demanded QoS are satisfied as much as possible. A fair scheduling policy is considered as the most appropriate. Experimental results on a real grid infrastructure are presented to illustrate the efficiency of the proposed workload prediction - scheduling algorithm compared to other approaches presented in the literature. en
heal.journalName IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics en
dc.identifier.doi 10.1109/TSMCB.2003.822282 en
dc.identifier.volume 34 en
dc.identifier.issue 2 en
dc.identifier.spage 1235 en
dc.identifier.epage 1247 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής