dc.contributor.author |
Kounadis, AN |
en |
dc.contributor.author |
Gantes, CJ |
en |
dc.contributor.author |
Raftoyiannis, IG |
en |
dc.date.accessioned |
2014-03-01T01:19:44Z |
|
dc.date.available |
2014-03-01T01:19:44Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.issn |
0020-7462 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/15690 |
|
dc.subject |
Degree of Freedom |
en |
dc.subject |
Energy Balance |
en |
dc.subject |
Geometric Approach |
en |
dc.subject |
Initial Value Problem |
en |
dc.subject |
Non-linear Dynamics |
en |
dc.subject |
Potential Energy |
en |
dc.subject |
runge kutta |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Bifurcation (mathematics) |
en |
dc.subject.other |
Damping |
en |
dc.subject.other |
Degrees of freedom (mechanics) |
en |
dc.subject.other |
Dynamic loads |
en |
dc.subject.other |
Kinetic energy |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Nonlinear systems |
en |
dc.subject.other |
Parameter estimation |
en |
dc.subject.other |
Potential energy |
en |
dc.subject.other |
Problem solving |
en |
dc.subject.other |
Rayleigh scattering |
en |
dc.subject.other |
Reliability |
en |
dc.subject.other |
Dynamic buckling |
en |
dc.subject.other |
Energy functions |
en |
dc.subject.other |
Static instability |
en |
dc.subject.other |
Symmetric imperfections |
en |
dc.subject.other |
Buckling |
en |
dc.title |
A geometric approach for establishing dynamic buckling loads of autonomous potential N-degree-of-freedom systems |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.ijnonlinmec.2004.01.005 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.ijnonlinmec.2004.01.005 |
en |
heal.language |
English |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
Non-linear dynamic buckling of autonomous non-dissipative N-degree-of-freedom systems whose static instability is governed either by a limit point or by an unstable symmetric bifurcation is thoroughly discussed using energy and geometric considerations. Characteristic distances associated with the geometry of the zero level total potential energy ""hypersurface"" in connection with total energy-balance equation lead to dynamic (global) instability criteria. These criteria allow the determination of ""exact"" dynamic buckling loads without solving the non-linear initial-value problem. The reliability and efficiency of the proposed geometric approach is demonstrated via several dynamic buckling analyses of 3-degree-of-freedom systems which subsequently are compared with corresponding numerical analyses based on the Verner-Runge-Kutta scheme. © 2004 Elsevier Ltd. All rights reserved. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
International Journal of Non-Linear Mechanics |
en |
dc.identifier.doi |
10.1016/j.ijnonlinmec.2004.01.005 |
en |
dc.identifier.isi |
ISI:000223452600008 |
en |
dc.identifier.volume |
39 |
en |
dc.identifier.issue |
10 |
en |
dc.identifier.spage |
1635 |
en |
dc.identifier.epage |
1646 |
en |