dc.contributor.author |
Karanasiou, IS |
en |
dc.contributor.author |
Uzunoglu, NK |
en |
dc.contributor.author |
Stergiopoulos, S |
en |
dc.contributor.author |
Wong, W |
en |
dc.date.accessioned |
2014-03-01T01:19:46Z |
|
dc.date.available |
2014-03-01T01:19:46Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.issn |
12979562 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/15708 |
|
dc.subject |
Conductive ellipsoidal cavity |
en |
dc.subject |
Electromagnetic thermal noise |
en |
dc.subject |
Focused microwave radiometry |
en |
dc.subject |
Focusing properties |
en |
dc.subject.other |
analytic method |
en |
dc.subject.other |
article |
en |
dc.subject.other |
calculation |
en |
dc.subject.other |
microwave radiation |
en |
dc.subject.other |
radiometry |
en |
dc.subject.other |
room temperature |
en |
dc.subject.other |
subcutaneous tissue |
en |
dc.subject.other |
theoretical model |
en |
dc.subject.other |
theoretical study |
en |
dc.subject.other |
thermography |
en |
dc.subject.other |
three dimensional imaging |
en |
dc.subject.other |
tissue distribution |
en |
dc.subject.other |
water temperature |
en |
dc.subject.other |
Animalia |
en |
dc.title |
A passive 3D imaging thermograph using microwave radiometry |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.rbmret.2004.07.003 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.rbmret.2004.07.003 |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
The present paper discusses the feasibility of a novel microwave radiometric system to measure, non-invasively, temperature distribution in subcutaneous tissues, including possibly intracranial brain diagnostic applications. The operation principle of the system is based on the use of an ellipsoidal conductive wall cavity, which provides the required focusing and the ability of imaging via contactless measurements. The basis of the theoretical analysis of this work is the fundamental law of the chaotic radiation emitted by material objects (microwave electromagnetic thermal noise) being at a temperature above the absolute zero. In the framework of the present research the theoretical principles along with phantom and animal experiments are presented. © 2004 Elsevier SAS. All rights reserved. |
en |
heal.journalName |
ITBM-RBM |
en |
dc.identifier.doi |
10.1016/j.rbmret.2004.07.003 |
en |
dc.identifier.volume |
25 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
227 |
en |
dc.identifier.epage |
239 |
en |