dc.contributor.author |
Psarrakos, PJ |
en |
dc.contributor.author |
Tsatsomeros, MJ |
en |
dc.date.accessioned |
2014-03-01T01:19:47Z |
|
dc.date.available |
2014-03-01T01:19:47Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.issn |
0024-3795 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/15713 |
|
dc.subject |
Matrix polynomial |
en |
dc.subject |
Multistep difference equation |
en |
dc.subject |
Nonnegative matrix |
en |
dc.subject |
Numerical range |
en |
dc.subject |
Perron polynomial |
en |
dc.subject |
Perron-Frobenius |
en |
dc.subject |
Spectral radius |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.other |
Difference equations |
en |
dc.subject.other |
Linearization |
en |
dc.subject.other |
Mathematical operators |
en |
dc.subject.other |
Optimization |
en |
dc.subject.other |
Polynomials |
en |
dc.subject.other |
Random processes |
en |
dc.subject.other |
Theorem proving |
en |
dc.subject.other |
Matrix polynomials |
en |
dc.subject.other |
Multistep difference equation |
en |
dc.subject.other |
Nonnegative matrix |
en |
dc.subject.other |
Numerical range |
en |
dc.subject.other |
Perron polynomial |
en |
dc.subject.other |
Spectral radius |
en |
dc.subject.other |
Matrix algebra |
en |
dc.title |
A primer of Perron-Frobenius theory for matrix polynomials |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.laa.2003.12.026 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.laa.2003.12.026 |
en |
heal.language |
English |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
We present an extension of Perron-Frobenius theory to the spectra and numerical ranges of Perron polynomials, namely, matrix polynomials of the form L(lambda) = Ilambda(m) -A(m-1)lambda(m-1) - (...) - A(1)lambda - A(0), where the coefficient matrices are entrywise nonnegative. Our approach relies on the companion matrix linearization. First, we recount the generalization of the Perron-Frobenius Theorem to Perron polynomials and report some of its consequences. Subsequently, we examine the role of L(lambda) in multistep difference equations and provide a multistep version of the Fundamental Theorem of Demography. Finally, we extend Issos' results on the numerical range of nonnegative matrices to Perron polynomials. (C) 2004 Elsevier Inc. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE INC |
en |
heal.journalName |
Linear Algebra and Its Applications |
en |
dc.identifier.doi |
10.1016/j.laa.2003.12.026 |
en |
dc.identifier.isi |
ISI:000224949200023 |
en |
dc.identifier.volume |
393 |
en |
dc.identifier.issue |
1-3 |
en |
dc.identifier.spage |
333 |
en |
dc.identifier.epage |
351 |
en |