HEAL DSpace

A primer of Perron-Frobenius theory for matrix polynomials

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Psarrakos, PJ en
dc.contributor.author Tsatsomeros, MJ en
dc.date.accessioned 2014-03-01T01:19:47Z
dc.date.available 2014-03-01T01:19:47Z
dc.date.issued 2004 en
dc.identifier.issn 0024-3795 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/15713
dc.subject Matrix polynomial en
dc.subject Multistep difference equation en
dc.subject Nonnegative matrix en
dc.subject Numerical range en
dc.subject Perron polynomial en
dc.subject Perron-Frobenius en
dc.subject Spectral radius en
dc.subject.classification Mathematics, Applied en
dc.subject.other Difference equations en
dc.subject.other Linearization en
dc.subject.other Mathematical operators en
dc.subject.other Optimization en
dc.subject.other Polynomials en
dc.subject.other Random processes en
dc.subject.other Theorem proving en
dc.subject.other Matrix polynomials en
dc.subject.other Multistep difference equation en
dc.subject.other Nonnegative matrix en
dc.subject.other Numerical range en
dc.subject.other Perron polynomial en
dc.subject.other Spectral radius en
dc.subject.other Matrix algebra en
dc.title A primer of Perron-Frobenius theory for matrix polynomials en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.laa.2003.12.026 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.laa.2003.12.026 en
heal.language English en
heal.publicationDate 2004 en
heal.abstract We present an extension of Perron-Frobenius theory to the spectra and numerical ranges of Perron polynomials, namely, matrix polynomials of the form L(lambda) = Ilambda(m) -A(m-1)lambda(m-1) - (...) - A(1)lambda - A(0), where the coefficient matrices are entrywise nonnegative. Our approach relies on the companion matrix linearization. First, we recount the generalization of the Perron-Frobenius Theorem to Perron polynomials and report some of its consequences. Subsequently, we examine the role of L(lambda) in multistep difference equations and provide a multistep version of the Fundamental Theorem of Demography. Finally, we extend Issos' results on the numerical range of nonnegative matrices to Perron polynomials. (C) 2004 Elsevier Inc. All rights reserved. en
heal.publisher ELSEVIER SCIENCE INC en
heal.journalName Linear Algebra and Its Applications en
dc.identifier.doi 10.1016/j.laa.2003.12.026 en
dc.identifier.isi ISI:000224949200023 en
dc.identifier.volume 393 en
dc.identifier.issue 1-3 en
dc.identifier.spage 333 en
dc.identifier.epage 351 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής