HEAL DSpace

A spatio-temporal simulation model of the response of solid tumours to radiotherapy in vivo: Parametric validation concerning oxygen enhancement ratio and cell cycle duration

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Antipas, VP en
dc.contributor.author Stamatakos, GS en
dc.contributor.author Uzunoglu, NK en
dc.contributor.author Dionysiou, DD en
dc.contributor.author Dale, RG en
dc.date.accessioned 2014-03-01T01:19:48Z
dc.date.available 2014-03-01T01:19:48Z
dc.date.issued 2004 en
dc.identifier.issn 0031-9155 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/15719
dc.subject Cell Cycle en
dc.subject glioblastoma multiforme en
dc.subject Optimal Algorithm en
dc.subject Parametric Study en
dc.subject Simulation Methods en
dc.subject Simulation Model en
dc.subject Treatment Planning en
dc.subject Wild Type en
dc.subject.classification Engineering, Biomedical en
dc.subject.classification Radiology, Nuclear Medicine & Medical Imaging en
dc.subject.other Cells en
dc.subject.other Computer simulation en
dc.subject.other Conformations en
dc.subject.other Fractionation en
dc.subject.other Mathematical models en
dc.subject.other Shrinkage en
dc.subject.other Tumors en
dc.subject.other Bio-simulation en
dc.subject.other Initial cell phase distribution en
dc.subject.other Neovascularization en
dc.subject.other Radiotherapy en
dc.subject.other oxygen en
dc.subject.other protein p53 en
dc.subject.other algorithm en
dc.subject.other angiogenesis en
dc.subject.other article en
dc.subject.other cancer radiotherapy en
dc.subject.other cell cycle en
dc.subject.other controlled study en
dc.subject.other experience en
dc.subject.other experimental model en
dc.subject.other gene mutation en
dc.subject.other glioblastoma en
dc.subject.other growth inhibition en
dc.subject.other human en
dc.subject.other hypothesis en
dc.subject.other image analysis en
dc.subject.other in vivo study en
dc.subject.other medical literature en
dc.subject.other oxygen enhancement ratio en
dc.subject.other parametric test en
dc.subject.other prediction en
dc.subject.other priority journal en
dc.subject.other qualitative analysis en
dc.subject.other quantitative analysis en
dc.subject.other radiation dose fractionation en
dc.subject.other radiosensitivity en
dc.subject.other simulation en
dc.subject.other treatment outcome en
dc.subject.other treatment planning en
dc.subject.other tumor growth en
dc.subject.other tumor volume en
dc.subject.other wild type en
dc.subject.other Algorithms en
dc.subject.other Brain Neoplasms en
dc.subject.other Cell Cycle en
dc.subject.other Cell Division en
dc.subject.other Computer Simulation en
dc.subject.other Dose Fractionation en
dc.subject.other Dose-Response Relationship, Radiation en
dc.subject.other Genes, p53 en
dc.subject.other Glioblastoma en
dc.subject.other Humans en
dc.subject.other Neoplasms en
dc.subject.other Neovascularization, Pathologic en
dc.subject.other Oxygen en
dc.subject.other Radiation Tolerance en
dc.subject.other Radiobiology en
dc.subject.other Radiotherapy Dosage en
dc.subject.other Radiotherapy Planning, Computer-Assisted en
dc.subject.other Radiotherapy, Conformal en
dc.subject.other Time Factors en
dc.title A spatio-temporal simulation model of the response of solid tumours to radiotherapy in vivo: Parametric validation concerning oxygen enhancement ratio and cell cycle duration en
heal.type journalArticle en
heal.identifier.primary 10.1088/0031-9155/49/8/008 en
heal.identifier.secondary http://dx.doi.org/10.1088/0031-9155/49/8/008 en
heal.language English en
heal.publicationDate 2004 en
heal.abstract Advanced bio-simulation methods are expected to substantially improve radiotherapy treatment planning. To this end a novel spatio-temporal patient-specific simulation model of the in vivo response of malignant tumours to radiotherapy schemes has been recently developed by our group. This paper discusses recent improvements to the model: an optimized algorithm leading to conformal shrinkage of the tumour as a response to radiotherapy, the introduction of the oxygen enhancement ratio (OER), a realistic initial cell phase distribution and finally an advanced imaging-based algorithm simulating the neovascularization field. A parametric study of the influence of the cell cycle duration Tc, OER, OERβ for the beta LQ parameter on tumour growth, shrinkage and response to irradiation under two different fractionation schemes has been made. The model has been applied to two glioblastoma multiforme (GBM) cases, one with wild type (wt) and another one with mutated (mt) p53 gene. Furthermore, the model has been applied to a hypothetical GBM tumour with α and β values corresponding to those of generic radiosensitive tumours. According to the model predictions, a whole tumour with shorter Tc tends to repopulate faster, as is to be expected. Furthermore, a higher OER value for the dormant cells leads to a more radioresistant whole tumour. A small variation of the OERβ value does not seem to play a major role in the tumour response. Accelerated fractionation proved to be superior to the standard scheme for the whole range of the OER values considered. Finally, the tumour with mt p53 was shown to be more radioresistant compared to the tumour with wt p53. Although all simulation predictions agree at least qualitatively with the clinical experience and literature, a long-term clinical adaptation and quantitative validation procedure is in progress. © 2004 IOP Publishing Ltd. en
heal.publisher IOP PUBLISHING LTD en
heal.journalName Physics in Medicine and Biology en
dc.identifier.doi 10.1088/0031-9155/49/8/008 en
dc.identifier.isi ISI:000221250800008 en
dc.identifier.volume 49 en
dc.identifier.issue 8 en
dc.identifier.spage 1485 en
dc.identifier.epage 1504 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής