dc.contributor.author |
Papageorgiou, E |
en |
dc.contributor.author |
Kokolakis, G |
en |
dc.date.accessioned |
2014-03-01T01:19:51Z |
|
dc.date.available |
2014-03-01T01:19:51Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.issn |
0020-7721 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/15726 |
|
dc.subject.classification |
Automation & Control Systems |
en |
dc.subject.classification |
Computer Science, Theory & Methods |
en |
dc.subject.classification |
Operations Research & Management Science |
en |
dc.subject.other |
Availability |
en |
dc.subject.other |
Failure analysis |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Probability |
en |
dc.subject.other |
Reliability |
en |
dc.subject.other |
Two unit parallel system |
en |
dc.subject.other |
Two unit standby system models |
en |
dc.subject.other |
Parallel processing systems |
en |
dc.title |
A two-unit parallel system supported by (n - 2) standbys with general and non-identical lifetimes |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1080/00207720310001657027 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1080/00207720310001657027 |
en |
heal.language |
English |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
This paper examines a functioning policy of a parallel system. We assume availability of n non-identical, non-repairable units for replacement or support. Two units start their operation simultaneously at times S1 = S2 = 0, and any one of them is replaced instantaneously upon its failure by one of the (n - 2) standby units at random starting times Si (i = 3,⋯,n). Thus, with probability one, the system is functioning with two units up till the failure of the (n - 1)th unit. Unit lifetimes Ti (i = 1,⋯,n) have a general joint distribution function F(t). The system has to operate for a fixed period of time, c, and it stops functioning when all available units fail before c. The probability that the system is functioning for the required period of time c depends on the distribution of the unit lifetimes. The reliability of the system is evaluated by recursive relations. Independent unit lifetimes are considered as special cases. |
en |
heal.publisher |
TAYLOR & FRANCIS LTD |
en |
heal.journalName |
International Journal of Systems Science |
en |
dc.identifier.doi |
10.1080/00207720310001657027 |
en |
dc.identifier.isi |
ISI:000188792500001 |
en |
dc.identifier.volume |
35 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
1 |
en |
dc.identifier.epage |
12 |
en |