HEAL DSpace

Acoustic field induced in spheres with inhomogeneous density by external sources

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kokkorakis, GC en
dc.contributor.author Fikioris, JG en
dc.date.accessioned 2014-03-01T01:19:52Z
dc.date.available 2014-03-01T01:19:52Z
dc.date.issued 2004 en
dc.identifier.issn 0001-4966 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/15734
dc.subject.classification Acoustics en
dc.subject.other Electromagnetic fields en
dc.subject.other Functions en
dc.subject.other Integral equations en
dc.subject.other Orthogonal expansions en
dc.subject.other Spherical harmonics en
dc.subject.other Acoustic fields en
dc.subject.other acoustics en
dc.subject.other electromagnetic field en
dc.subject.other accuracy en
dc.subject.other acoustics en
dc.subject.other article en
dc.subject.other compression en
dc.subject.other density en
dc.subject.other electromagnetic field en
dc.subject.other mathematical analysis en
dc.subject.other priority journal en
dc.title Acoustic field induced in spheres with inhomogeneous density by external sources en
heal.type journalArticle en
heal.identifier.primary 10.1121/1.1635410 en
heal.identifier.secondary http://dx.doi.org/10.1121/1.1635410 en
heal.language English en
heal.publicationDate 2004 en
heal.abstract Acoustic or electromagnetic fields induced in the interior of inhomogeneous penetrable bodies by external sources can be evaluated via well-known volume integral equations. For bodies of arbitrary shape and/or composition, for which separation of variables fails, a direct attack for the solution of these integral equations is the only available approach. In a previous paper by the same authors the scalar (acoustic) field in inhomogeneous spheres of arbitrary compressibility, but with constant density, was considered. In the present one the direct hybrid (analytical-numerical) method applied to the much simpler integral equation for spheres with constant density is generalized to densities that vary with r, theta, or even phi. This extension is by no means trivial, owing to the appearance of the derivatives of both the density and the unknown function in the volume integral, a fact necessitating a more subtle and accuracy-sensitive approach. Again, the spherical shape allows use of the orthogonal spherical harmonics and of Dini's expansions of a general type for the radial functions. The convergence of the latter, shown to be superior to other possible sets of orthogonal expansions, can be further optimized by the proper selection of a crucial parameter in their eigenvalue equation. (C) 2004 Acoustical Society of America. en
heal.publisher ACOUSTICAL SOC AMER AMER INST PHYSICS en
heal.journalName Journal of the Acoustical Society of America en
dc.identifier.doi 10.1121/1.1635410 en
dc.identifier.isi ISI:000188944100004 en
dc.identifier.volume 115 en
dc.identifier.issue 2 en
dc.identifier.spage 478 en
dc.identifier.epage 487 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής