dc.contributor.author |
Kokkorakis, GC |
en |
dc.contributor.author |
Fikioris, JG |
en |
dc.date.accessioned |
2014-03-01T01:19:52Z |
|
dc.date.available |
2014-03-01T01:19:52Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.issn |
0001-4966 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/15734 |
|
dc.subject.classification |
Acoustics |
en |
dc.subject.other |
Electromagnetic fields |
en |
dc.subject.other |
Functions |
en |
dc.subject.other |
Integral equations |
en |
dc.subject.other |
Orthogonal expansions |
en |
dc.subject.other |
Spherical harmonics |
en |
dc.subject.other |
Acoustic fields |
en |
dc.subject.other |
acoustics |
en |
dc.subject.other |
electromagnetic field |
en |
dc.subject.other |
accuracy |
en |
dc.subject.other |
acoustics |
en |
dc.subject.other |
article |
en |
dc.subject.other |
compression |
en |
dc.subject.other |
density |
en |
dc.subject.other |
electromagnetic field |
en |
dc.subject.other |
mathematical analysis |
en |
dc.subject.other |
priority journal |
en |
dc.title |
Acoustic field induced in spheres with inhomogeneous density by external sources |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1121/1.1635410 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1121/1.1635410 |
en |
heal.language |
English |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
Acoustic or electromagnetic fields induced in the interior of inhomogeneous penetrable bodies by external sources can be evaluated via well-known volume integral equations. For bodies of arbitrary shape and/or composition, for which separation of variables fails, a direct attack for the solution of these integral equations is the only available approach. In a previous paper by the same authors the scalar (acoustic) field in inhomogeneous spheres of arbitrary compressibility, but with constant density, was considered. In the present one the direct hybrid (analytical-numerical) method applied to the much simpler integral equation for spheres with constant density is generalized to densities that vary with r, theta, or even phi. This extension is by no means trivial, owing to the appearance of the derivatives of both the density and the unknown function in the volume integral, a fact necessitating a more subtle and accuracy-sensitive approach. Again, the spherical shape allows use of the orthogonal spherical harmonics and of Dini's expansions of a general type for the radial functions. The convergence of the latter, shown to be superior to other possible sets of orthogonal expansions, can be further optimized by the proper selection of a crucial parameter in their eigenvalue equation. (C) 2004 Acoustical Society of America. |
en |
heal.publisher |
ACOUSTICAL SOC AMER AMER INST PHYSICS |
en |
heal.journalName |
Journal of the Acoustical Society of America |
en |
dc.identifier.doi |
10.1121/1.1635410 |
en |
dc.identifier.isi |
ISI:000188944100004 |
en |
dc.identifier.volume |
115 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
478 |
en |
dc.identifier.epage |
487 |
en |