dc.contributor.author |
McDonald, JJ |
en |
dc.contributor.author |
Psarrakos, PJ |
en |
dc.contributor.author |
Tsatsomeros, MJ |
en |
dc.date.accessioned |
2014-03-01T01:19:53Z |
|
dc.date.available |
2014-03-01T01:19:53Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.issn |
0035-7596 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/15743 |
|
dc.subject |
Almost skew-symmetric matrix |
en |
dc.subject |
Numerical range |
en |
dc.subject |
Principal pivot transform |
en |
dc.subject |
Tournament |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
NUMERICAL RANGE |
en |
dc.title |
Almost skew-symmetric matrices |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1216/rmjm/1181069905 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1216/rmjm/1181069905 |
en |
heal.language |
English |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
Almost skew-symmetric matrices are real matrices whose symmetric parts have rank one. Using the notion of the numerical range, we obtain eigenvalue inequalities and a localization of the spectrum of an almost skew-symmetric matrix. We show that almost skew-symmetry is invariant under principal pivot transformation and inversion, and that the symmetric parts of Schur complements in almost skew-symmetric matrices have rank at most one. We also use affine combinations of A and A(t) to gain further insight into eigenvalue location and the numerical range of an almost skew-symmetric matrix. |
en |
heal.publisher |
ROCKY MT MATH CONSORTIUM |
en |
heal.journalName |
Rocky Mountain Journal of Mathematics |
en |
dc.identifier.doi |
10.1216/rmjm/1181069905 |
en |
dc.identifier.isi |
ISI:000221861800018 |
en |
dc.identifier.volume |
34 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
269 |
en |
dc.identifier.epage |
288 |
en |