dc.contributor.author |
Kikiras, P |
en |
dc.contributor.author |
Drakoulis, D |
en |
dc.date.accessioned |
2014-03-01T01:19:54Z |
|
dc.date.available |
2014-03-01T01:19:54Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.issn |
0929-6212 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/15755 |
|
dc.subject |
Data fusion |
en |
dc.subject |
Kalman filtering |
en |
dc.subject |
Mobile geolocation |
en |
dc.subject |
State estimation |
en |
dc.subject.classification |
Telecommunications |
en |
dc.subject.other |
Data fusion |
en |
dc.subject.other |
Mobile geolocation |
en |
dc.subject.other |
Multiple sensor data |
en |
dc.subject.other |
Service providers |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Information analysis |
en |
dc.subject.other |
Kalman filtering |
en |
dc.subject.other |
Sensor data fusion |
en |
dc.subject.other |
State estimation |
en |
dc.subject.other |
Telecommunication services |
en |
dc.subject.other |
Tracking (position) |
en |
dc.subject.other |
Mobile telecommunication systems |
en |
dc.title |
An integrated approach for the estimation of mobile subscriber geolocation |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1023/B:WIRE.0000049401.97358.c7 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1023/B:WIRE.0000049401.97358.c7 |
en |
heal.language |
English |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
The continuous growth of wireless services market, fuels the need for precise location dependent services, leading researchers from academia and industry to reassess existing geolocation methods regarding accuracy and availability of position estimation. The proposed method for mobile subscriber geolocation utilizes key concepts from estimation theory and specifically the Kalman filter algorithm to determine an optimal estimate on the actual system state ( which primarily includes location, velocity) based on the observations acquired by employing network- or terminal-based techniques, which are briefly presented and assessed thereafter. Given the proven limitations of individual techniques, the alternative strategies for fusion of data are outlined, the details of the operation of a fusion scheme based on the Kalman filter are discussed and the impact of the proposed work over conventional methodologies is quantified. |
en |
heal.publisher |
KLUWER ACADEMIC PUBL |
en |
heal.journalName |
Wireless Personal Communications |
en |
dc.identifier.doi |
10.1023/B:WIRE.0000049401.97358.c7 |
en |
dc.identifier.isi |
ISI:000225324600011 |
en |
dc.identifier.volume |
30 |
en |
dc.identifier.issue |
2-4 |
en |
dc.identifier.spage |
217 |
en |
dc.identifier.epage |
231 |
en |