HEAL DSpace

An Inverse Spectral Result for the Periodic Euler-Bernoulli Equation

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Papanicolaou, VG en
dc.date.accessioned 2014-03-01T01:19:54Z
dc.date.available 2014-03-01T01:19:54Z
dc.date.issued 2004 en
dc.identifier.issn 0022-2518 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/15756
dc.subject Euler-Bernoulli (or beam) operator/equation en
dc.subject Floquet theory en
dc.subject Hill's operator, periodic coefficients en
dc.subject Inverse periodic spectral theory en
dc.subject Multipoint eigenvalue problem en
dc.subject Pseudospectrum en
dc.subject Spectrum en
dc.subject.classification Mathematics en
dc.subject.other MATRIX HILLS EQUATION en
dc.subject.other SYSTEMS en
dc.title An Inverse Spectral Result for the Periodic Euler-Bernoulli Equation en
heal.type journalArticle en
heal.identifier.primary 10.1512/iumj.2004.53.2493 en
heal.identifier.secondary http://dx.doi.org/10.1512/iumj.2004.53.2493 en
heal.language English en
heal.publicationDate 2004 en
heal.abstract The Floquet (direct spectral) theory of the periodic Euler-Bernoulli equation has been developed by the author in [19], [21], and [20], Here we begin a systematic study of the inverse periodic spectral theory, in the spirit of the corresponding theory of the second-order operator, namely the Hill's operator. Our main result is that, if there are no pseudogaps (equivalently, if the Bloch-Floquet variety is reducible in a certain sense), then the Euler-Bernoulli operator is the square of a second-order (Hill-type) operator. This result had been conjectured by the author, in his earlier works. en
heal.publisher INDIANA UNIV MATH JOURNAL en
heal.journalName Indiana University Mathematics Journal en
dc.identifier.doi 10.1512/iumj.2004.53.2493 en
dc.identifier.isi ISI:000220775800011 en
dc.identifier.volume 53 en
dc.identifier.issue 1 en
dc.identifier.spage 223 en
dc.identifier.epage 242 en


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record