dc.contributor.author |
Papadopoulos, EG |
en |
dc.contributor.author |
Chasparis, GC |
en |
dc.date.accessioned |
2014-03-01T01:19:54Z |
|
dc.date.available |
2014-03-01T01:19:54Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.issn |
0022-0434 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/15759 |
|
dc.subject |
Model Based Control |
en |
dc.subject.classification |
Automation & Control Systems |
en |
dc.subject.classification |
Instruments & Instrumentation |
en |
dc.subject.other |
Friction |
en |
dc.subject.other |
Kinetic theory |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Parameter estimation |
en |
dc.subject.other |
Real time systems |
en |
dc.subject.other |
Servomechanisms |
en |
dc.subject.other |
Signal processing |
en |
dc.subject.other |
Tachometers |
en |
dc.subject.other |
Torque control |
en |
dc.subject.other |
Velocity control |
en |
dc.subject.other |
Viscosity |
en |
dc.subject.other |
Friction compensation |
en |
dc.subject.other |
Kinetic friction model |
en |
dc.subject.other |
Phase-plane analysis |
en |
dc.subject.other |
System response |
en |
dc.subject.other |
Control system analysis |
en |
dc.title |
Analysis and model-based control of servomechanisms with friction |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1115/1.1849245 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1115/1.1849245 |
en |
heal.language |
English |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
Friction is responsible for several servomechanism limitations, and their elimination is always a challenge for control engineers. In this paper, model-based feedback compensation is studied for servomechanism tracking tasks. Several kinetic friction models are employed and their parameters identified experimentally. The effects of friction compensation on system response are examined using describing function analysis. A number of control laws including classical laws, rigid body motion models, and friction compensation are compared experimentally in large-displacement tasks. Results show that the best response is obtained using a controller that incorporates a rigid body model and a friction model based on an accurate description of identified kinetic friction effects. Copyright © 2004 by ASME. |
en |
heal.publisher |
ASME-AMER SOC MECHANICAL ENG |
en |
heal.journalName |
Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME |
en |
dc.identifier.doi |
10.1115/1.1849245 |
en |
dc.identifier.isi |
ISI:000228201400024 |
en |
dc.identifier.volume |
126 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
911 |
en |
dc.identifier.epage |
915 |
en |