HEAL DSpace

Another look at projection properties of hadamard matrices

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Evangelaras, H en
dc.contributor.author Koukouvinos, C en
dc.date.accessioned 2014-03-01T01:19:55Z
dc.date.available 2014-03-01T01:19:55Z
dc.date.issued 2004 en
dc.identifier.issn 0361-0926 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/15764
dc.subject Distinct runs en
dc.subject Factorial designs en
dc.subject Generalized resolution en
dc.subject Generalized wordlength pattern en
dc.subject Hadamard matrices en
dc.subject Inequivalent projections en
dc.subject Orthogonal arrays en
dc.subject Screening designs en
dc.subject.classification Statistics & Probability en
dc.subject.other Computational methods en
dc.subject.other Frequencies en
dc.subject.other Mathematical operators en
dc.subject.other Statistics en
dc.subject.other Distinct runs en
dc.subject.other Factorial designs en
dc.subject.other Generalized resolution en
dc.subject.other Generalized worklength pattern en
dc.subject.other Hadamard matrices en
dc.subject.other Inequivalent projections en
dc.subject.other Orthogonal arrays en
dc.subject.other Screening designs en
dc.subject.other Matrix algebra en
dc.title Another look at projection properties of hadamard matrices en
heal.type journalArticle en
heal.identifier.primary 10.1081/STA-120037263 en
heal.identifier.secondary http://dx.doi.org/10.1081/STA-120037263 en
heal.language English en
heal.publicationDate 2004 en
heal.abstract Suppose a large number of factors (q) is examined in an experimental situation. It is often anticipated that only a few (k) of these will be important. Usually, it is not known which of the q factors will be the important ones, that is, it is not known which k columns of the experimental design will be of further interest. Screening designs are useful for such situations. It is of practical interest for a given k to know all the classes of inequivalent projections of the design into the k dimensions that have certain statistical properties, since it helps experimenters in selecting a screening design with favorable properties. In this paper we study all the classes of inequivalent projections of certain two-level orthogonal arrays that arise from Hadamard matrices, using well known statistical criteria, such as generalized resolution and generalized minimum aberration. We also pay attention to each projection's distinct runs. Results are given for orthogonal arrays with n = 16; 20 and 24 runs, when they are projected into small dimensions. Useful remarks on design selection are made based on the frequency of appearance of each projection design in every Hadamard matrix. en
heal.publisher MARCEL DEKKER INC en
heal.journalName Communications in Statistics - Theory and Methods en
dc.identifier.doi 10.1081/STA-120037263 en
dc.identifier.isi ISI:000222166800011 en
dc.identifier.volume 33 en
dc.identifier.issue 7 en
dc.identifier.spage 1607 en
dc.identifier.epage 1620 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής