dc.contributor.author |
Sinopoulos, P |
en |
dc.date.accessioned |
2014-03-01T01:19:55Z |
|
dc.date.available |
2014-03-01T01:19:55Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.issn |
00019054 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/15770 |
|
dc.subject |
Abelian group |
en |
dc.subject |
Matrix-valued function |
en |
dc.subject |
Vector-valued function |
en |
dc.subject |
Wilson's functional equation |
en |
dc.title |
Applications of Wilson's functional equation |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s00010-003-2704-8 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s00010-003-2704-8 |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
Summary. We reduce the functional equation $$ f(x + y) - f(x - y) = \sum_{i=1}^{n} g_{i}(x)h_{i}(y) $$ for n = 1, 2, 3 to the matrix equation $$ E(x + y) + E(x - y) = [E(y) + E(-y)]E(x) $$ and we determine the general solutions for n = 2. |
en |
heal.journalName |
Aequationes Mathematicae |
en |
dc.identifier.doi |
10.1007/s00010-003-2704-8 |
en |
dc.identifier.volume |
67 |
en |
dc.identifier.issue |
1-2 |
en |
dc.identifier.spage |
188 |
en |
dc.identifier.epage |
194 |
en |