HEAL DSpace

Approximate gradient projection method with Runge-Kutta schemes for optimal control problems

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Chryssoverghi, I en
dc.contributor.author Coletsos, J en
dc.contributor.author Kokkinis, B en
dc.date.accessioned 2014-03-01T01:19:55Z
dc.date.available 2014-03-01T01:19:55Z
dc.date.issued 2004 en
dc.identifier.issn 0926-6003 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/15771
dc.subject Discretization en
dc.subject Gradient projection method en
dc.subject Non-matching Runge-Kutta schemes en
dc.subject Optimal control en
dc.subject Piecewise affine controls en
dc.subject.classification Operations Research & Management Science en
dc.subject.classification Mathematics, Applied en
dc.subject.other Discretization en
dc.subject.other Gradient projection methods en
dc.subject.other Non-matching Runge-Kutta schemes en
dc.subject.other Optimal control en
dc.subject.other Piecewise affine controls en
dc.subject.other Gradient methods en
dc.subject.other Numerical methods en
dc.subject.other Optimization en
dc.subject.other Problem solving en
dc.subject.other Runge Kutta methods en
dc.subject.other Topology en
dc.subject.other Approximation theory en
dc.title Approximate gradient projection method with Runge-Kutta schemes for optimal control problems en
heal.type journalArticle en
heal.identifier.primary 10.1023/B:COAP.0000039490.61195.86 en
heal.identifier.secondary http://dx.doi.org/10.1023/B:COAP.0000039490.61195.86 en
heal.language English en
heal.publicationDate 2004 en
heal.abstract We consider an optimal control problem for systems governed by ordinary differential equations with control constraints. The state equation is discretized by the explicit fourth order Runge-Kutta scheme and the controls are approximated by discontinuous piecewise affine ones. We then propose an approximate gradient projection method that generates sequences of discrete controls and progressively refines the discretization during the iterations. Instead of using the exact discrete directional derivative, which is difficult to calculate, we use an approximate derivative of the cost functional defined by discretizing the continuous adjoint equation by the same Runge-Kutta scheme and the integral involved by Simpson's integration rule, both involving intermediate approximations. The main result is that accumulation points, if they exist, of sequences constructed by this method satisfy the weak necessary conditions for optimality for the continuous problem. Finally, numerical examples are given. en
heal.publisher KLUWER ACADEMIC PUBL en
heal.journalName Computational Optimization and Applications en
dc.identifier.doi 10.1023/B:COAP.0000039490.61195.86 en
dc.identifier.isi ISI:000223535300005 en
dc.identifier.volume 29 en
dc.identifier.issue 1 en
dc.identifier.spage 91 en
dc.identifier.epage 115 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής