dc.contributor.author |
Noor, MA |
en |
dc.contributor.author |
Rassias, TM |
en |
dc.date.accessioned |
2014-03-01T01:19:56Z |
|
dc.date.available |
2014-03-01T01:19:56Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.issn |
1331-4343 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/15775 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-2542547369&partnerID=40&md5=e34b43d91e22101b5f26ed61e713fde1 |
en |
dc.subject |
Auxiliary principle |
en |
dc.subject |
Convergence |
en |
dc.subject |
Iterative methods |
en |
dc.subject |
Variational inequalities |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
ALGORITHMS |
en |
dc.title |
Auxiliary principle technique for multivalued mixed quasi-variational inequalities |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
In this paper, we suggest and analyze a class of predictor-corrector methods for solving mixed quasi variational inequalities by using the auxiliary principle technique. We prove that the convergence of these predictor-corrector type methods requires only the partial relaxed strongly monotonicity, which is a weaker condition than co-coercivity. Since the mixed quasi variational inequalities include (quasi) variational inequalities as special cases, our results continue to hold for these problems. Our results represent an improvement and refinement of the previously known results. |
en |
heal.publisher |
ELEMENT |
en |
heal.journalName |
Mathematical Inequalities and Applications |
en |
dc.identifier.isi |
ISI:000221580800013 |
en |
dc.identifier.volume |
7 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
267 |
en |
dc.identifier.epage |
276 |
en |