HEAL DSpace

Boundary integral equation method to solve embedded planar crack problems under shear loading

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Theotokoglou, EE en
dc.date.accessioned 2014-03-01T01:19:58Z
dc.date.available 2014-03-01T01:19:58Z
dc.date.issued 2004 en
dc.identifier.issn 0178-7675 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/15788
dc.subject Boundary integral equation method en
dc.subject Elliptic plane cracks en
dc.subject Embedded plane cracks en
dc.subject Hypersingular integral equations en
dc.subject Shear loading en
dc.subject Stress intensity factors en
dc.subject Three dimensional body en
dc.subject.classification Mathematics, Interdisciplinary Applications en
dc.subject.classification Mechanics en
dc.subject.other Boundary conditions en
dc.subject.other Boundary value problems en
dc.subject.other Embedded systems en
dc.subject.other Fracture mechanics en
dc.subject.other Integral equations en
dc.subject.other Loads (forces) en
dc.subject.other Stress intensity factors en
dc.subject.other Boundary integral equation methods en
dc.subject.other Elliptic plane cracks en
dc.subject.other Embedded plane cracks en
dc.subject.other Hypersingular integral equations en
dc.subject.other Shear loading en
dc.subject.other Three dimensional bodies en
dc.subject.other Crack initiation en
dc.title Boundary integral equation method to solve embedded planar crack problems under shear loading en
heal.type journalArticle en
heal.identifier.primary 10.1007/s00466-003-0535-z en
heal.identifier.secondary http://dx.doi.org/10.1007/s00466-003-0535-z en
heal.language English en
heal.publicationDate 2004 en
heal.abstract The solution of three-dimensional planar cracks under shear loading are investigated by the boundary integral equation method. A system of two hypersingular integral equations of a three-dimensional elastic solid with an embedded planar crack are given. The solution of the boundary integral equations is succeeded taking into consideration an appropriate Gauss quadrature rule for finite part integrals which is suitable for the numerical treatment of any plane crack without a polygonal contour shape and permit the fast convergence for the results. The stress intensity factors at the crack front are calculated in the case of a circular and an elliptic crack and are compared with the analytical solution. en
heal.publisher SPRINGER-VERLAG en
heal.journalName Computational Mechanics en
dc.identifier.doi 10.1007/s00466-003-0535-z en
dc.identifier.isi ISI:000220863300001 en
dc.identifier.volume 33 en
dc.identifier.issue 5 en
dc.identifier.spage 327 en
dc.identifier.epage 333 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής