HEAL DSpace

Calendering of pseudoplastic and viscoplastic sheets of finite thickness

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Sofou, S en
dc.contributor.author Mitsoulis, E en
dc.date.accessioned 2014-03-01T01:19:59Z
dc.date.available 2014-03-01T01:19:59Z
dc.date.issued 2004 en
dc.identifier.issn 8756-0879 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/15793
dc.subject Bingham plastic model en
dc.subject Calendering en
dc.subject Finite sheets en
dc.subject Herschel-Bulkley model en
dc.subject Power-law model en
dc.subject Pseudoplasticity en
dc.subject Sheet thickness en
dc.subject Viscoplasticity en
dc.subject Yield stress en
dc.subject Yielded/unyielded regions en
dc.subject.classification Materials Science, Coatings & Films en
dc.subject.other Approximation theory en
dc.subject.other Boundary conditions en
dc.subject.other Calendering en
dc.subject.other Integration en
dc.subject.other Mathematical models en
dc.subject.other Pressure distribution en
dc.subject.other Viscoplasticity en
dc.subject.other Yield stress en
dc.subject.other Bingham plastic model en
dc.subject.other Finite sheets en
dc.subject.other Herschel-Bulkley model en
dc.subject.other Power law model en
dc.subject.other Pressure gradient en
dc.subject.other Pseudoplasticity en
dc.subject.other Sheet thickness en
dc.subject.other Plastic sheets en
dc.title Calendering of pseudoplastic and viscoplastic sheets of finite thickness en
heal.type journalArticle en
heal.identifier.primary 10.1177/8756087904047660 en
heal.identifier.secondary http://dx.doi.org/10.1177/8756087904047660 en
heal.language English en
heal.publicationDate 2004 en
heal.abstract The lubrication approximation theory (LAT) is used to provide numerical results for calendering sheets with a desired final thickness. The Herschel-Bulkley model of viscoplasticity is used, which reduces with appropriate modifications to the Bingham, the power-law and the Newtonian models. For a desired final sheet thickness, the results give the required thickness of the entering sheet as a function of the dimensionless power-law index (in the case of pseudoplasticity) and the dimensionless yield stress (in the case of viscoplasticity). The corresponding pressure-gradient and pressure distributions are also given. The integrated quantities of engineering interest are calculated. These include the maximum pressure, the roll-separating force, and the power input to the rolls. Both pseudoplasticity and viscoplasticity lead to thicker sheets than the Newtonian model for large entry thickness ratios, while they lead to thinner sheets for small entry thickness ratios. In the case of viscoplastic sheets, the interesting yielded/unyielded regions appear as a function of the dimensionless yield stress. All engineering quantities, given in a dimensionless form, increase substantially with the departure from the Newtonian values. A test case for calendering a plastic sheet with a yield stress is given as an example of implementing the present results. © 2004 Sage Publications. en
heal.publisher SAGE PUBLICATIONS LTD en
heal.journalName Journal of Plastic Film and Sheeting en
dc.identifier.doi 10.1177/8756087904047660 en
dc.identifier.isi ISI:000225553100002 en
dc.identifier.volume 20 en
dc.identifier.issue 3 en
dc.identifier.spage 185 en
dc.identifier.epage 222 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής