dc.contributor.author |
Adam, M |
en |
dc.contributor.author |
Maroulas, J |
en |
dc.date.accessioned |
2014-03-01T01:19:59Z |
|
dc.date.available |
2014-03-01T01:19:59Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.issn |
0020-3157 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/15795 |
|
dc.subject |
Canonical correlation |
en |
dc.subject |
Projectors |
en |
dc.subject.classification |
Statistics & Probability |
en |
dc.subject.other |
Correlation methods |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Regression analysis |
en |
dc.subject.other |
Statistical methods |
en |
dc.subject.other |
Theorem proving |
en |
dc.subject.other |
Canonical correlation |
en |
dc.subject.other |
Correlation analysis |
en |
dc.subject.other |
Projectors |
en |
dc.subject.other |
Statistical models |
en |
dc.subject.other |
Matrix algebra |
en |
dc.title |
Canonical correlations in multi-way layout |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/BF02506481 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/BF02506481 |
en |
heal.language |
English |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
In this paper, some formulas are proposed, which concern the numbers of unit canonical correlations in a multi-way layout. Different types of canonical correlations are considered and their connection with connectedness and orthogonality are examined. © 2004 The Institute of Statistical Mathematics. |
en |
heal.publisher |
KLUWER ACADEMIC PUBL |
en |
heal.journalName |
Annals of the Institute of Statistical Mathematics |
en |
dc.identifier.doi |
10.1007/BF02506481 |
en |
dc.identifier.isi |
ISI:000226249700004 |
en |
dc.identifier.volume |
56 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
655 |
en |
dc.identifier.epage |
666 |
en |