HEAL DSpace

Characterization of digital medical images utilizing support vector machines

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Maglogiannis, IG en
dc.contributor.author Zafiropoulos, EP en
dc.date.accessioned 2014-03-01T01:20:00Z
dc.date.available 2014-03-01T01:20:00Z
dc.date.issued 2004 en
dc.identifier.issn 14726947 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/15800
dc.subject Data Classification en
dc.subject Digital Image en
dc.subject Discriminant Analysis en
dc.subject Human Subjects en
dc.subject Image Analysis en
dc.subject Image Processing Techniques en
dc.subject Malignant Melanoma en
dc.subject Medical Image en
dc.subject Skin Lesion en
dc.subject Statistical Discrimination en
dc.subject Support Vector Machine en
dc.subject Neural Network en
dc.subject.other algorithm en
dc.subject.other article en
dc.subject.other artificial neural network en
dc.subject.other computer assisted diagnosis en
dc.subject.other diagnostic accuracy en
dc.subject.other discriminant analysis en
dc.subject.other disease classification en
dc.subject.other dysplastic nevus en
dc.subject.other image analysis en
dc.subject.other image processing en
dc.subject.other imaging system en
dc.subject.other intermethod comparison en
dc.subject.other melanoma en
dc.subject.other skin defect en
dc.title Characterization of digital medical images utilizing support vector machines en
heal.type journalArticle en
heal.identifier.primary 10.1186/1472-6947-4-1 en
heal.identifier.secondary http://dx.doi.org/10.1186/1472-6947-4-1 en
heal.identifier.secondary 1 en
heal.publicationDate 2004 en
heal.abstract Background: In this paper we discuss an efficient methodology for the image analysis and characterization of digital images containing skin lesions using Support Vector Machines and present the results of a preliminary study. Methods: The methodology is based on the support vector machines algorithm for data classification and it has been applied to the problem of the recognition of malignant melanoma versus dysplastic naevus. Border and colour based features were extracted from digital images of skin lesions acquired under reproducible conditions, using basic image processing techniques. Two alternative classification methods, the statistical discriminant analysis and the application of neural networks were also applied to the same problem and the results are compared. Results: The SVM (Support Vector Machines) algorithm performed quite well achieving 94.1% correct classification, which is better than the performance of the other two classification methodologies. The method of discriminant analysis classified correctly 88% of cases (71% of Malignant Melanoma and 100% of Dysplastic Naevi), while the neural networks performed approximately the same. Conclusion: The use of a computer-based system, like the one described in this paper, is intended to avoid human subjectivity and to perform specific tasks according to a number of criteria. However the presence of an expert dermatologist is considered necessary for the overall visual assessment of the skin lesion and the final diagnosis. en
heal.journalName BMC Medical Informatics and Decision Making en
dc.identifier.doi 10.1186/1472-6947-4-1 en
dc.identifier.volume 4 en
dc.identifier.spage 1 en
dc.identifier.epage 9 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής