dc.contributor.author |
Mamma, D |
en |
dc.contributor.author |
Gerontas, S |
en |
dc.contributor.author |
Philippopoulos, CJ |
en |
dc.contributor.author |
Christakopoulos, P |
en |
dc.contributor.author |
Macris, BJ |
en |
dc.contributor.author |
Kekos, D |
en |
dc.date.accessioned |
2014-03-01T01:20:00Z |
|
dc.date.available |
2014-03-01T01:20:00Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.issn |
1093-4529 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/15807 |
|
dc.subject |
Biodegradation |
en |
dc.subject |
Combined process |
en |
dc.subject |
Oily wastewater |
en |
dc.subject |
Photo-assisted oxidation |
en |
dc.subject |
Pseudomonas putida |
en |
dc.subject |
UV/H2O2 |
en |
dc.subject.classification |
Engineering, Environmental |
en |
dc.subject.classification |
Environmental Sciences |
en |
dc.subject.other |
Alcohols |
en |
dc.subject.other |
Biodegradation |
en |
dc.subject.other |
Chemical oxygen demand |
en |
dc.subject.other |
Free radicals |
en |
dc.subject.other |
Photooxidation |
en |
dc.subject.other |
Wastewater treatment |
en |
dc.subject.other |
Hydroxyl radicals |
en |
dc.subject.other |
Pretreatment |
en |
dc.subject.other |
Environmental engineering |
en |
dc.subject.other |
acid |
en |
dc.subject.other |
alcohol |
en |
dc.subject.other |
ethylene glycol |
en |
dc.subject.other |
hydroxyl radical |
en |
dc.subject.other |
lubricating agent |
en |
dc.subject.other |
oil |
en |
dc.subject.other |
ortho cresol |
en |
dc.subject.other |
para cresol |
en |
dc.subject.other |
phenol |
en |
dc.subject.other |
phenol derivative |
en |
dc.subject.other |
article |
en |
dc.subject.other |
biodegradation |
en |
dc.subject.other |
degradation |
en |
dc.subject.other |
industry |
en |
dc.subject.other |
light |
en |
dc.subject.other |
oxidation |
en |
dc.subject.other |
petrochemical industry |
en |
dc.subject.other |
photooxidation |
en |
dc.subject.other |
Pseudomonas putida |
en |
dc.subject.other |
ultraviolet radiation |
en |
dc.subject.other |
waste water management |
en |
dc.subject.other |
Biodegradation, Environmental |
en |
dc.subject.other |
Bioreactors |
en |
dc.subject.other |
Cresols |
en |
dc.subject.other |
Ethylene Glycol |
en |
dc.subject.other |
Humans |
en |
dc.subject.other |
Hydrogen Peroxide |
en |
dc.subject.other |
Oils |
en |
dc.subject.other |
Oxidation-Reduction |
en |
dc.subject.other |
Phenol |
en |
dc.subject.other |
Pseudomonas putida |
en |
dc.subject.other |
Ultraviolet Rays |
en |
dc.subject.other |
Water Pollutants, Chemical |
en |
dc.subject.other |
Water Purification |
en |
dc.subject.other |
Pseudomonas |
en |
dc.subject.other |
Pseudomonas putida |
en |
dc.title |
Combined Photo-Assisted and Biological Treatment of Industrial Oily Wastewater |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1081/ESE-120027738 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1081/ESE-120027738 |
en |
heal.language |
English |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
In the present study an oily wastewater from the lubricant unit of a petroleum company was evaluated by combining the sequence photo-assisted oxidation-Pseudomonas putida DSM 437. The wastewater contained various alcohols, acids and phenolic compounds. From the above mentioned compounds the biodegradation of ethylene glycol, phenol, o-cresol and p-cresol was examined. The direct biodegradation of the wastewater using P. putida DSM 437 resulted in 85% ethylene glycol assimilation while phenol, o-cresol and p-cresol assimilation was in the range of 27% to 40%. In order to increase the degradation of the phenolic compounds photo-assisted oxidation was applied to the wastewater using UV/H2O2 as a pretreatment step to biological degradation. Fe(III) were used in order to accelerate the formation of the hydroxyl radicals and consequently the overall photo-oxidation process. The addition of Fe(III) ions resulted in 30% decrease of COD within the first 10 min while the respected value without iron ions was 5%. The combined photo-assisted oxidation and biodegradation of the wastewater resulted in 100% removal of ethylene glycol. The overall degradation of phenol was 78% while the 59% and 84% of the initial o-cresol and p-cresol respectively, were removed from the wastewater. The combined process resulted in 72% of COD removal. |
en |
heal.publisher |
MARCEL DEKKER INC |
en |
heal.journalName |
Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering |
en |
dc.identifier.doi |
10.1081/ESE-120027738 |
en |
dc.identifier.isi |
ISI:000220119800014 |
en |
dc.identifier.volume |
39 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
729 |
en |
dc.identifier.epage |
740 |
en |