dc.contributor.author |
Kehagias, A |
en |
dc.contributor.author |
Kofinas, G |
en |
dc.date.accessioned |
2014-03-01T01:20:04Z |
|
dc.date.available |
2014-03-01T01:20:04Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.issn |
0264-9381 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/15832 |
|
dc.subject |
Cosmological Constant |
en |
dc.subject |
General Relativity |
en |
dc.subject |
Initial Condition |
en |
dc.subject |
Ordinary Differential Equation |
en |
dc.subject |
Scalar Field |
en |
dc.subject |
Structure Formation |
en |
dc.subject |
First Order |
en |
dc.subject |
Present Value |
en |
dc.subject |
Robertson Walker |
en |
dc.subject.classification |
Astronomy & Astrophysics |
en |
dc.subject.classification |
Physics, Multidisciplinary |
en |
dc.subject.classification |
Physics, Particles & Fields |
en |
dc.subject.other |
SCALAR-FIELD COSMOLOGIES |
en |
dc.subject.other |
POWER-LAW INFLATION |
en |
dc.subject.other |
GRAVITY THEORIES |
en |
dc.subject.other |
ACCELERATING COSMOLOGIES |
en |
dc.subject.other |
SCALING SOLUTIONS |
en |
dc.subject.other |
I MODELS |
en |
dc.subject.other |
UNIVERSE |
en |
dc.subject.other |
QUINTESSENCE |
en |
dc.subject.other |
SUPERGRAVITY |
en |
dc.subject.other |
SPACETIMES |
en |
dc.title |
Cosmology with exponential potentials |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1088/0264-9381/21/16/003 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1088/0264-9381/21/16/003 |
en |
heal.language |
English |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
We examine in the context of general relativity the dynamics of a spatially flat Robertson-Walker universe filled with a classical minimally coupled scalar field phi of exponential potential V(phi) similar to exp(-muphi) plus pressureless baryonic matter. This system is reduced to a first-order ordinary differential equation for Omega(phi) (w(phi)) or q(w(phi)), providing direct evidence on the acceleration/deceleration properties of the system. As a consequence, for positive potentials, passage into acceleration not at late times is generically a feature of the system for any value of mu, even when the late-times attractors are decelerating. Furthermore, the structure formation bound, together with the constraints Omega(m0) approximate to 0.25 - 0.3, -1 less than or equal to, w(phi0) less than or equal to, -0.6, provides, independently of initial conditions and other parameters, the necessary condition 0 < mu less than or similar to 1.6 root8piG(N), while the less conservative constraint -1 less than or equal to w(phi) less than or equal to -0.93 gives 0 < mu less than or equal to 0.7root8piG(N). Special solutions are found to possess intervals of acceleration. For the almost cosmological constant case wphi approximate to -1, the general relation Omega(phi)(wphi) is obtained. The generic (nonlinearized) late-times solution of the system in the plane (w(phi), Omega(phi)) or (w(phi), q) is also derived. |
en |
heal.publisher |
IOP PUBLISHING LTD |
en |
heal.journalName |
Classical and Quantum Gravity |
en |
dc.identifier.doi |
10.1088/0264-9381/21/16/003 |
en |
dc.identifier.isi |
ISI:000223629500004 |
en |
dc.identifier.volume |
21 |
en |
dc.identifier.issue |
16 |
en |
dc.identifier.spage |
3871 |
en |
dc.identifier.epage |
3885 |
en |