dc.contributor.author |
Karayannidis, N |
en |
dc.contributor.author |
Sellis, T |
en |
dc.contributor.author |
Kouvaras, Y |
en |
dc.date.accessioned |
2014-03-01T01:20:05Z |
|
dc.date.available |
2014-03-01T01:20:05Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.issn |
03029743 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/15836 |
|
dc.subject |
Hierarchical Clustering |
en |
dc.subject |
Query Evaluation |
en |
dc.title |
CUBE File: A file structure for hierarchically clustered OLAP cubes |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/978-3-540-24741-8_36 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/978-3-540-24741-8_36 |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
Hierarchical clustering has been proved an effective means for physically organizing large fact tables since it reduces significantly the I/O cost during ad hoc OLAP query evaluation. In this paper, we propose a novel multidimensional file structure for organizing the most detailed data of a cube, the CUBE File. The CUBE File achieves hierarchical clustering of the data, enabling fast access via hierarchical restrictions. Moreover, it imposes a low storage cost and adapts perfectly to the extensive sparseness of the data space achieving a high compression rate. Our results show that the CUBE File outperforms the most effective method proposed up to now for hierarchically clustering the cube, resulting in 7-9 times less I/Os on average for all workloads tested. Thus, it achieves a higher degree of hierarchical clustering. Moreover, the CUBE File imposes a 2-3 times lower storage cost. © Springer-Verlag 2004. |
en |
heal.journalName |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
en |
dc.identifier.doi |
10.1007/978-3-540-24741-8_36 |
en |
dc.identifier.volume |
2992 |
en |
dc.identifier.spage |
621 |
en |
dc.identifier.epage |
638 |
en |