dc.contributor.author |
Vlyssides, A |
en |
dc.contributor.author |
Barampouti, EM |
en |
dc.contributor.author |
Mai, S |
en |
dc.contributor.author |
Arapoglou, D |
en |
dc.contributor.author |
Kotronarou, A |
en |
dc.date.accessioned |
2014-03-01T01:20:06Z |
|
dc.date.available |
2014-03-01T01:20:06Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.issn |
0013-936X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/15840 |
|
dc.subject |
Aqueous Solution |
en |
dc.subject |
Electrochemical Oxidation |
en |
dc.subject.classification |
Engineering, Environmental |
en |
dc.subject.classification |
Environmental Sciences |
en |
dc.subject.other |
Acetic acid |
en |
dc.subject.other |
Cathodes |
en |
dc.subject.other |
Degradation |
en |
dc.subject.other |
Electrochemistry |
en |
dc.subject.other |
Electrolytes |
en |
dc.subject.other |
Gas chromatography |
en |
dc.subject.other |
Mass spectrometry |
en |
dc.subject.other |
Oxidation |
en |
dc.subject.other |
Phosphorus compounds |
en |
dc.subject.other |
Sodium chloride |
en |
dc.subject.other |
Stainless steel |
en |
dc.subject.other |
Electrochemical oxidation |
en |
dc.subject.other |
Formic acids |
en |
dc.subject.other |
Methylparathion |
en |
dc.subject.other |
Particulate organic carbon |
en |
dc.subject.other |
Pesticides |
en |
dc.subject.other |
acetic acid |
en |
dc.subject.other |
formic acid |
en |
dc.subject.other |
organic carbon |
en |
dc.subject.other |
oxalic acid |
en |
dc.subject.other |
parathion methyl |
en |
dc.subject.other |
phosphorus |
en |
dc.subject.other |
platinum |
en |
dc.subject.other |
sodium chloride |
en |
dc.subject.other |
stainless steel |
en |
dc.subject.other |
sulfide |
en |
dc.subject.other |
sulfur |
en |
dc.subject.other |
titanium |
en |
dc.subject.other |
electrochemical method |
en |
dc.subject.other |
aqueous solution |
en |
dc.subject.other |
article |
en |
dc.subject.other |
degradation kinetics |
en |
dc.subject.other |
electrochemical analysis |
en |
dc.subject.other |
electrode |
en |
dc.subject.other |
gas chromatography |
en |
dc.subject.other |
mass spectrometry |
en |
dc.subject.other |
oxidation |
en |
dc.subject.other |
Electrochemistry |
en |
dc.subject.other |
Gas Chromatography-Mass Spectrometry |
en |
dc.subject.other |
Insecticides |
en |
dc.subject.other |
Methyl Parathion |
en |
dc.subject.other |
Oxidation-Reduction |
en |
dc.subject.other |
Platinum |
en |
dc.subject.other |
Sodium Chloride |
en |
dc.subject.other |
Solutions |
en |
dc.subject.other |
Stainless Steel |
en |
dc.subject.other |
Titanium |
en |
dc.subject.other |
Waste Management |
en |
dc.subject.other |
Water Purification |
en |
dc.title |
Degradation of methylparathion in aqueous solution by electrochemical oxidation |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1021/es049726b |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1021/es049726b |
en |
heal.language |
English |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
The electrochemical degradation of methylparathion has been investigated by using Ti/Pt as anode, Stainless Steel 304 as cathode, and sodium chloride as electrolyte. The pesticide is rapidly degraded, but full mineralization is not observed. Degradation products have been monitored through gas chromatography and mass spectrometry, and the overall degradation process has been monitored through dissolved and particulate organic carbon, sulfur, and phosphorus measurements. Several intermediates have been identified, and oxalic, formic, and acetic acids as well as tetraphosphorus trisulfide have been recognized as final products of the degradation process. A proposed mechanism of the process is presented. |
en |
heal.publisher |
AMER CHEMICAL SOC |
en |
heal.journalName |
Environmental Science and Technology |
en |
dc.identifier.doi |
10.1021/es049726b |
en |
dc.identifier.isi |
ISI:000225272100042 |
en |
dc.identifier.volume |
38 |
en |
dc.identifier.issue |
22 |
en |
dc.identifier.spage |
6125 |
en |
dc.identifier.epage |
6131 |
en |