dc.contributor.author |
Hatzichristos, T |
en |
dc.date.accessioned |
2014-03-01T01:20:06Z |
|
dc.date.available |
2014-03-01T01:20:06Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.issn |
0265-8135 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/15841 |
|
dc.subject |
Computational Intelligence |
en |
dc.subject |
Fuzzy Classification |
en |
dc.subject |
Geographic Information System |
en |
dc.subject |
Neural Network |
en |
dc.subject.classification |
Environmental Studies |
en |
dc.subject.other |
classification |
en |
dc.subject.other |
demographic trend |
en |
dc.subject.other |
GIS |
en |
dc.subject.other |
methodology |
en |
dc.title |
Delineation of demographic regions with GIS and computational intelligence |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1068/b1296 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1068/b1296 |
en |
heal.language |
English |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
This paper presents a methodology for the creation of homogeneous demographic regions with geographical information systems (GIS) and computational intelligence. The proposed method is unsupervised fuzzy classification performed by neural networks using the fuzzy Kohonen algorithm. GIS technology offers a powerful set of tools for the input, management, and output of data, whereas computational intelligence is used for the analysis and the classification of the data. The proposed methodology is applied to the municipality of Athens, in Greece. Finally the advantages and disadvantages of the approach are discussed. |
en |
heal.publisher |
PION LTD |
en |
heal.journalName |
Environment and Planning B: Planning and Design |
en |
dc.identifier.doi |
10.1068/b1296 |
en |
dc.identifier.isi |
ISI:000188876300004 |
en |
dc.identifier.volume |
31 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
39 |
en |
dc.identifier.epage |
49 |
en |