dc.contributor.author |
Caroni, C |
en |
dc.contributor.author |
Karioti, V |
en |
dc.date.accessioned |
2014-03-01T01:20:10Z |
|
dc.date.available |
2014-03-01T01:20:10Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.issn |
0167-9473 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/15852 |
|
dc.subject |
Autoregressive model |
en |
dc.subject |
Innovative outliers |
en |
dc.subject |
Time series |
en |
dc.subject.classification |
Computer Science, Interdisciplinary Applications |
en |
dc.subject.classification |
Statistics & Probability |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Correlation methods |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Maximum likelihood estimation |
en |
dc.subject.other |
Random processes |
en |
dc.subject.other |
Regression analysis |
en |
dc.subject.other |
Table lookup |
en |
dc.subject.other |
Time series analysis |
en |
dc.subject.other |
Heteroscedastic time series |
en |
dc.subject.other |
Innovative outliers |
en |
dc.subject.other |
Random effects |
en |
dc.subject.other |
Data reduction |
en |
dc.subject.other |
statistical analysis |
en |
dc.title |
Detecting an innovative outlier in a set of time series |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.csda.2003.09.004 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.csda.2003.09.004 |
en |
heal.language |
English |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
Tests for an innovative outlier affecting every member of a set of autoregressive time series at the same time point are developed. In one model, the outliers are represented as independent random effects; likelihood ratio tests are derived for this case and simulated critical values are tabulated. In a second model, assuming that the size of the outlier is the same in each series, a standard regression framework can be used and correlations between the series are introduced. Simulation studies show that approximate critical values obtained from the chi(1)(2) distribution work well for heteroscedastic independent series and for the case of equal correlations between each pair of series. (C) 2003 Elsevier B.V. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
Computational Statistics and Data Analysis |
en |
dc.identifier.doi |
10.1016/j.csda.2003.09.004 |
en |
dc.identifier.isi |
ISI:000222135000010 |
en |
dc.identifier.volume |
46 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
561 |
en |
dc.identifier.epage |
570 |
en |