dc.contributor.author |
Dodos, P |
en |
dc.date.accessioned |
2014-03-01T01:20:13Z |
|
dc.date.available |
2014-03-01T01:20:13Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.issn |
0021-2172 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/15862 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-14644399216&partnerID=40&md5=3841984f2822eb53498c7a21af0919a1 |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
SPACES |
en |
dc.subject.other |
PROBABILITY |
en |
dc.subject.other |
PREVALENCE |
en |
dc.title |
Dichotomies of the set of test measures of a haar-null set |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
We prove that if X is a Polish space and F a face of P(X) with the Baire property, then F is either a meager or a co-meager subset of P(X). As a consequence we show that for every abelian Polish group X and every analytic Haar-null set A subset of X, the set of test measures T(A) of A is either meager or co-meager. We characterize the non-locally-compact groups as the ones for which there exists a closed Haar-null set F subset of X with T(F) meager. Moreover, we answer negatively a question of J. Mycielski by showing that for every non-locally-compact abelian Polish group and every sigma-compact subgroup G of X there exists a G-invariant F-sigma subset of X which is neither prevalent nor Haar-null. |
en |
heal.publisher |
MAGNES PRESS |
en |
heal.journalName |
Israel Journal of Mathematics |
en |
dc.identifier.isi |
ISI:000227601600002 |
en |
dc.identifier.volume |
144 |
en |
dc.identifier.spage |
15 |
en |
dc.identifier.epage |
28 |
en |