dc.contributor.author |
Astrinidis, E |
en |
dc.contributor.author |
Fenner, RT |
en |
dc.contributor.author |
Tsamasphyros, G |
en |
dc.date.accessioned |
2014-03-01T01:20:20Z |
|
dc.date.available |
2014-03-01T01:20:20Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.issn |
0178-7675 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/15894 |
|
dc.subject |
Adaptive procedures |
en |
dc.subject |
Boundary element method |
en |
dc.subject |
Elastoplastic analysis |
en |
dc.subject |
Initial strain formulation |
en |
dc.subject |
Mesh redesign |
en |
dc.subject |
Progressive refinement |
en |
dc.subject.classification |
Mathematics, Interdisciplinary Applications |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Adaptive systems |
en |
dc.subject.other |
Boundary element method |
en |
dc.subject.other |
Elasticity |
en |
dc.subject.other |
Integral equations |
en |
dc.subject.other |
Matrix algebra |
en |
dc.subject.other |
Prandtl number |
en |
dc.subject.other |
Problem solving |
en |
dc.subject.other |
Quadratic programming |
en |
dc.subject.other |
Strain |
en |
dc.subject.other |
Adaptive procedures |
en |
dc.subject.other |
Elastoplastic analysis |
en |
dc.subject.other |
Initial strain formulations |
en |
dc.subject.other |
Mesh redesign |
en |
dc.subject.other |
Progressive refinement |
en |
dc.subject.other |
Elastoplasticity |
en |
dc.title |
Elastoplastic analysis with adaptive boundary element method |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s00466-003-0519-z |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s00466-003-0519-z |
en |
heal.language |
English |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
The purpose of this paper is to examine the capabilities provided by an iterative - adaptive mesh redesign method developed for the Boundary Integral Equation (BIE) method for elastoplastic analysis. In previous papers [1, 2] the fundamentals of the method where presented in elasticity and elastoplasticity. It was shown there that the adaptive procedure converges fast and is specially developed to reveal the ability of the BIE to provide high accuracy with very economic deployment of quadratic boundary and interior elements. In this paper the results of method applied on particular problems in elastoplasticity are compared against well known experimental solutions. The ability of the adaptive scheme to converge fast is demonstrated, but more important finding is the fact that the progressive refinement of the discretisation gives more insight into the physical problem. |
en |
heal.publisher |
SPRINGER-VERLAG |
en |
heal.journalName |
Computational Mechanics |
en |
dc.identifier.doi |
10.1007/s00466-003-0519-z |
en |
dc.identifier.isi |
ISI:000188930300003 |
en |
dc.identifier.volume |
33 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
186 |
en |
dc.identifier.epage |
193 |
en |