dc.contributor.author |
Polyrakis, IA |
en |
dc.date.accessioned |
2014-03-01T01:20:23Z |
|
dc.date.available |
2014-03-01T01:20:23Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.issn |
0022247X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/15902 |
|
dc.subject |
banach space |
en |
dc.subject |
Dual Space |
en |
dc.title |
Embeddability of L1 (μ) in dual spaces, geometry of cones and a characterization of c0 |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.jmaa.2003.08.033 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.jmaa.2003.08.033 |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
In this article we suppose that (Ω, Σ, μ ) is a measure space and T an one-to-one, linear, continuous operator of L1 (μ) into the dual E′ of a Banach space E. For any measurable set A consider the image T(L1+(μA)) of the positive cone of the space L1(μA) in E′, where μ A is the restriction of the measure μ on A. We provide geometrical conditions on the cones T(L1+(μ A)) which yield that the measure μ is atomic, i.e., that L 1 (μ) is lattice isometric to l1 (A script sign), where A script sign denotes the set of atoms of μ. This result yields also a new characterization of c0(Γ). © 2003 Elsevier Inc. All rights reserved. |
en |
heal.journalName |
Journal of Mathematical Analysis and Applications |
en |
dc.identifier.doi |
10.1016/j.jmaa.2003.08.033 |
en |
dc.identifier.volume |
289 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
126 |
en |
dc.identifier.epage |
142 |
en |