dc.contributor.author |
Evangelaras, H |
en |
dc.contributor.author |
Georgiou, S |
en |
dc.contributor.author |
Koukouvinos, C |
en |
dc.date.accessioned |
2014-03-01T01:20:24Z |
|
dc.date.available |
2014-03-01T01:20:24Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.issn |
0026-1335 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/15911 |
|
dc.subject |
D-efficiency, Ds-efficiency |
en |
dc.subject |
Factorial designs |
en |
dc.subject |
Generalized aberration |
en |
dc.subject |
Generalized resolution |
en |
dc.subject |
Generalized wordlength pattern |
en |
dc.subject |
Hadamard matrices |
en |
dc.subject |
Hidden projection |
en |
dc.subject |
Inequivalent projections |
en |
dc.subject |
Screening designs |
en |
dc.subject |
Uniformity |
en |
dc.subject.classification |
Statistics & Probability |
en |
dc.subject.other |
MINIMUM ABERRATION CRITERIA |
en |
dc.subject.other |
FACTORIAL-DESIGNS |
en |
dc.subject.other |
PLACKETT-BURMAN |
en |
dc.subject.other |
CLASSIFICATION |
en |
dc.title |
Evaluation of inequivalent projections of Hadamard matrices of order 24 |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s001840300271 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s001840300271 |
en |
heal.language |
English |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
Screening designs are useful for situations where a large number of factors (q) is examined but only few (k) of these are expected to be important. It is of practical interest for a given k to know all the inequivalent projections of the design into the k dimensions. In this paper we give all the (combinatorially) inequivalent projections of inequivalent Hadamard matrices of order 24 into k = 3, 4 and 5 dimensions, as well as their frequencies. Then, we sort these projections according to their generalized resolution, generalized aberration and centered L2-discrepancy measure of uniformity. Then, we study the hidden projection properties of these designs as they are introduced by Wang and Wu (1995). The hidden projection property suggests that complex aliasing allows some interactions to be estimated without making additional runs. © Springer-Verlag 2004. |
en |
heal.publisher |
PHYSICA-VERLAG GMBH & CO |
en |
heal.journalName |
Metrika |
en |
dc.identifier.doi |
10.1007/s001840300271 |
en |
dc.identifier.isi |
ISI:000189273000005 |
en |
dc.identifier.volume |
59 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
51 |
en |
dc.identifier.epage |
73 |
en |