dc.contributor.author |
Koulocheris, D |
en |
dc.contributor.author |
Dertimanis, V |
en |
dc.contributor.author |
Vrazopoulos, H |
en |
dc.date.accessioned |
2014-03-01T01:20:26Z |
|
dc.date.available |
2014-03-01T01:20:26Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.issn |
0015-7899 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/15919 |
|
dc.subject |
Dynamic System |
en |
dc.subject |
Moving Average |
en |
dc.subject |
Optimal Algorithm |
en |
dc.subject |
Prediction Error |
en |
dc.subject |
Prediction Error Method |
en |
dc.subject |
Robot Arm |
en |
dc.subject |
Input Output |
en |
dc.subject |
Single Input Single Output |
en |
dc.subject.classification |
Engineering, Multidisciplinary |
en |
dc.subject.classification |
Engineering, Mechanical |
en |
dc.subject.other |
Error analysis |
en |
dc.subject.other |
Fourier transforms |
en |
dc.subject.other |
Parameter estimation |
en |
dc.subject.other |
Polynomial approximation |
en |
dc.subject.other |
Regression analysis |
en |
dc.subject.other |
Robotic arms |
en |
dc.subject.other |
Servomotors |
en |
dc.subject.other |
System stability |
en |
dc.subject.other |
Time domain analysis |
en |
dc.subject.other |
Time series analysis |
en |
dc.subject.other |
Vectors |
en |
dc.subject.other |
Autoregrassive polynomials |
en |
dc.subject.other |
Dynamic systems |
en |
dc.subject.other |
Prediction error methods (PEM) |
en |
dc.subject.other |
Systems analysis |
en |
dc.title |
Evolutionary parametric identification of dynamic systems |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s10010-003-0117-4 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s10010-003-0117-4 |
en |
heal.language |
English |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
This paper presents a new method for the estimation of Single Input-Single Output, Autoregressive Moving Average with exogenous inputs (ARMAX) models, by means of Prediction-Error Methods (PEM). It's main feature lies in the use of a hybrid optimization algorithm, capable of giving superior performance in PEM. The new method turns to be more flexible than conventional prediction-error techniques, since no initial ""guess"" for the parameter vector is required, while stability is guaranteed. For the practical implementation of the new method, a testing apparatus that consists of a flexible robotic arm driven by a servomotor has been used, and a corresponding input-output data set has been acquired. |
en |
heal.publisher |
SPRINGER HEIDELBERG |
en |
heal.journalName |
Forschung im Ingenieurwesen/Engineering Research |
en |
dc.identifier.doi |
10.1007/s10010-003-0117-4 |
en |
dc.identifier.isi |
ISI:000223372400001 |
en |
dc.identifier.volume |
68 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
173 |
en |
dc.identifier.epage |
181 |
en |