dc.contributor.author |
Filippakis, ME |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T01:20:26Z |
|
dc.date.available |
2014-03-01T01:20:26Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.issn |
1534-0392 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/15923 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-24944516630&partnerID=40&md5=41235b336b5a660920d52f6a9e621fe7 |
en |
dc.subject |
Generalized subdifferential |
en |
dc.subject |
Locally Lipschitz function |
en |
dc.subject |
Mountain Pass Theorem |
en |
dc.subject |
Multiple strictly positive solutions |
en |
dc.subject |
Nonsmooth critical point theory |
en |
dc.subject |
Nonsmooth Palais-Smale condition |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
QUASILINEAR ELLIPTIC-EQUATIONS |
en |
dc.subject.other |
DIFFERENTIAL-EQUATIONS |
en |
dc.subject.other |
NONUNIFORM NONRESONANCE |
en |
dc.title |
Existence and multiplicity of positive solutions for nonlinear boundary value problems driven by the scalar p-Laplacian |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
We study nonlinear Dirichlet problems driven by the scalar p-Laplacian with a nonsmooth potential. First for the so-called ""sublinear problem"", under nonuniform nonresonance conditions, we establish the existence of at least one strictly positive solution. Then we prove two multiplicity results for positive solutions. The first concerns the ""superlinear problem"" and the second is for the sublinear problem. The method of proof is variational based on the nonsmooth critical point theory for locally Lipschitz functions. Our results complement the ones obtained by De Coster (Nonlin.Anal.23 (1995)). |
en |
heal.publisher |
AMER INST MATHEMATICAL SCIENCES |
en |
heal.journalName |
Communications on Pure and Applied Analysis |
en |
dc.identifier.isi |
ISI:000226123400010 |
en |
dc.identifier.volume |
3 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
729 |
en |
dc.identifier.epage |
736 |
en |