HEAL DSpace

Existence and stability of localized oscillations in 1-dimensional lattices with soft-spring and hard-spring potentials

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Panagopoulos, P en
dc.contributor.author Bountis, T en
dc.contributor.author Skokos, C en
dc.date.accessioned 2014-03-01T01:20:26Z
dc.date.available 2014-03-01T01:20:26Z
dc.date.issued 2004 en
dc.identifier.issn 1048-9002 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/15924
dc.subject Coupling Constant en
dc.subject floquet theory en
dc.subject Indexing Method en
dc.subject Local Stability en
dc.subject Optical Waveguide en
dc.subject Parameter Space en
dc.subject Phase Space en
dc.subject Transport Properties en
dc.subject 1 dimensional en
dc.subject Local Oscillator en
dc.subject.classification Acoustics en
dc.subject.classification Engineering, Mechanical en
dc.subject.classification Mechanics en
dc.subject.other Approximation theory en
dc.subject.other Bifurcation (mathematics) en
dc.subject.other Convergence of numerical methods en
dc.subject.other Eigenvalues and eigenfunctions en
dc.subject.other Equations of motion en
dc.subject.other Matrix algebra en
dc.subject.other Oscillations en
dc.subject.other Perturbation techniques en
dc.subject.other Resonance en
dc.subject.other Discrete breathers en
dc.subject.other Floquet theory en
dc.subject.other Localized oscillations en
dc.subject.other Smaller alignment index method en
dc.subject.other Lattice vibrations en
dc.title Existence and stability of localized oscillations in 1-dimensional lattices with soft-spring and hard-spring potentials en
heal.type journalArticle en
heal.identifier.primary 10.1115/1.1804997 en
heal.identifier.secondary http://dx.doi.org/10.1115/1.1804997 en
heal.language English en
heal.publicationDate 2004 en
heal.abstract In this paper we use the method of homoclinic orbits to study the existence and stability of discrete breathers, i.e., spatially localized and time-periodic oscillations of a class of one-dimensional (1D) nonlinear lattices. The localization can be at one or several sites and the 1D lattices we investigate here have linear interaction between nearest neighbors and a quartic on-site potential V(u)=1/2Ku 2±1/4u4, where the (+) sign corresponds to ""hard spring"" and (-) to ""soft spring"" interactions. These localized oscillations - when they are stable under small perturbations - are very important for physical systems because they seriously affect the energy transport properties of the lattice. Discrete breathers have recently been created and observed in many experiments, as, e.g., in the Josephson junction arrays, optical waveguides, and low-dimensional surfaces. After showing how to construct them, we use Floquet theory to analyze their linear (local) stability, along certain curves in parameter space (α, ω), where α is the coupling constant and ω the frequency of the breather. We then apply the Smaller Alignment Index method (SALI) to investigate more globally their stability properties in phase space. Comparing our results for the ± cases of V(u), we find that the regions of existence and stability of breathers of the ""hard spring"" lattice are considerably larger than those of the ""soft spring"" system. This is mainly due to the fact that the conditions for resonances between breathers and linear modes are much less restrictive in the former than the latter case. Furthermore, the bifurcation properties are quite different in the two cases: For example, the phenomenon of complex instability, observed only for the "" soft spring"" system, destabilizes breathers without giving rise to new ones, while the system with ""hard springs"" exhibits curves in parameter space along which the number of monodromy matrix eigenvalues on the unit circle is constant and hence breather solutions preserve their stability character. Copyright © 2004 by ASME. en
heal.publisher ASME-AMER SOC MECHANICAL ENG en
heal.journalName Journal of Vibration and Acoustics, Transactions of the ASME en
dc.identifier.doi 10.1115/1.1804997 en
dc.identifier.isi ISI:000226485400006 en
dc.identifier.volume 126 en
dc.identifier.issue 4 en
dc.identifier.spage 520 en
dc.identifier.epage 527 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής