dc.contributor.author |
Filippakis, M |
en |
dc.contributor.author |
Gasinski, L |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T01:20:27Z |
|
dc.date.available |
2014-03-01T01:20:27Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.issn |
01689673 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/15926 |
|
dc.subject |
Differential inclusion |
en |
dc.subject |
Extremal periodic solution |
en |
dc.subject |
Hartman condition |
en |
dc.subject |
Multifunction |
en |
dc.subject |
Property u |
en |
dc.subject |
Schauder fixed point theorem |
en |
dc.subject |
Upper and lower semicontinuity |
en |
dc.subject |
Weak norm |
en |
dc.title |
Existence theorems for periodic differential inclusions in IRN |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s10255-004-0160-4 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s10255-004-0160-4 |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
We study the periodic problem for differential inclusions in ℝN. First we look for extremal periodic solutions. Using techniques from multivalued analysis and a fixed point argument we establish an existence theorem under some general hypotheses. We also consider the ""nonconvex periodic problem"" under lower semicontinuity hypotheses, and the ""convex periodic problem"" under general upper semicontinuity hypotheses on the multivalued vector field. For both problems, we prove existence theorems under very general hypotheses. Our approach extends existing results in the literature and appear to be the most general results on the nonconvex periodic problem. © Springer-Verlag 2004. |
en |
heal.journalName |
Acta Mathematicae Applicatae Sinica |
en |
dc.identifier.doi |
10.1007/s10255-004-0160-4 |
en |
dc.identifier.volume |
20 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
179 |
en |
dc.identifier.epage |
190 |
en |