HEAL DSpace

Experimental and self-consistent-field theoretical study of styrene block copolymer self-adhesive materials

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Daoulas, KCh en
dc.contributor.author Theodorou, DN en
dc.contributor.author Roos, A en
dc.contributor.author Creton, C en
dc.date.accessioned 2014-03-01T01:20:27Z
dc.date.available 2014-03-01T01:20:27Z
dc.date.issued 2004 en
dc.identifier.issn 0024-9297 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/15928
dc.subject Block Copolymer en
dc.subject Self Consistent Field en
dc.subject.classification Polymer Science en
dc.subject.other Adhesives en
dc.subject.other Atomic force microscopy en
dc.subject.other Computer simulation en
dc.subject.other Elastic moduli en
dc.subject.other Morphology en
dc.subject.other Strain en
dc.subject.other Stresses en
dc.subject.other Styrene en
dc.subject.other Tensile testing en
dc.subject.other X ray scattering en
dc.subject.other Bridging properties en
dc.subject.other Self adhesive materials en
dc.subject.other Stress strain curves en
dc.subject.other Tensile measurements en
dc.subject.other Block copolymers en
dc.title Experimental and self-consistent-field theoretical study of styrene block copolymer self-adhesive materials en
heal.type journalArticle en
heal.identifier.primary 10.1021/ma035383a en
heal.identifier.secondary http://dx.doi.org/10.1021/ma035383a en
heal.language English en
heal.publicationDate 2004 en
heal.abstract This work addresses thermodynamic and mechanical properties of styrene block copolymer (SBC) self-adhesive materials. Mixtures of polystyrene-block-polyisoprene-block-polystyrene (SIS triblock) copolymers with resin and their blends with polystyrene-block-polyisoprene (SI diblock) copolymers were investigated experimentally and theoretically. The experiments involved small-angle X-ray scattering, atomic force microscopy, and tensile measurements, while the theoretical analysis invoked a mesoscopic representation of SBC materials combined with a continuum, 3D real-space self-consistent-field (SCF) approach. The calculations predict that the SBC systems should become microphase separated, with PS-rich spherical domains forming a bcc lattice in SIS triblock/SI diblock blends and in SIS triblock/resin systems with low resin content (20 wt %), while at high (60 wt %) resin content a disordered structure of PS-rich domains is expected. Extensive comparisons of SCF predictions concerning the type and the geometric characteristics of the morphologies obtained, the composition profiles, and the effect of diblock and resin content on the long-range space ordering of the PS-rich domains are performed against the experimental data. SCF theory predicts that approximately 79% of SIS molecules are connecting different PS-rich domains (i.e., are forming bridges) in SIS/SI blends, almost independently of the SI diblock content. The SCF results are combined with a slip tube model of rubber elasticity to predict the elastic behavior of SBC materials. In particular, the bridging properties are used to estimate the PS-rich domain cross-linking contribution, G(c), to the total shear modulus. The entanglement contribution, G(e), is evaluated from experimental and theoretical results reported in the literature concerning the properties of entanglements. The predicted stress-strain curves are in good qualitative agreement with the tensile experimental data for small values of strain. en
heal.publisher AMER CHEMICAL SOC en
heal.journalName Macromolecules en
dc.identifier.doi 10.1021/ma035383a en
dc.identifier.isi ISI:000222258600046 en
dc.identifier.volume 37 en
dc.identifier.issue 13 en
dc.identifier.spage 5093 en
dc.identifier.epage 5109 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής