dc.contributor.author |
Moosavian, SAA |
en |
dc.contributor.author |
Papadopoulos, E |
en |
dc.date.accessioned |
2014-03-01T01:20:29Z |
|
dc.date.available |
2014-03-01T01:20:29Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.issn |
0169-1864 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/15936 |
|
dc.subject |
Dynamics |
en |
dc.subject |
Modeling and simulation |
en |
dc.subject |
Space robotic systems |
en |
dc.subject.classification |
Robotics |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Dynamics |
en |
dc.subject.other |
Equations of motion |
en |
dc.subject.other |
Kinetic energy |
en |
dc.subject.other |
Lagrange multipliers |
en |
dc.subject.other |
Robotics |
en |
dc.subject.other |
Satellites |
en |
dc.subject.other |
Space free-flying robot |
en |
dc.subject.other |
Space robotic systems |
en |
dc.subject.other |
Manipulators |
en |
dc.title |
Explicit dynamics of space free-flyers with multiple manipulators via SPACEMAPLE |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1163/156855304322758033 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1163/156855304322758033 |
en |
heal.language |
English |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
This paper focuses on the dynamics of a multiple manipulator space free-flying robot (SFFR) with rigid links and issues relevant to the development of appropriate control algorithms. To develop an explicit dynamics model of such complex systems, the Lagrangian formulation is applied. First, the system kinetic energy is derived based on a developed kinematics approach. Then, through vigorous mathematical analyses, three formats are obtained which describe the contribution of each term of kinetic energy to the equations of motion. Next, explicit derivations of a system's mass matrix, and of the vectors of non-linear velocity terms and generalized forces are introduced for the first time. The obtained dynamics model is very useful for dynamics analyses, design and development of control algorithms for such complex systems. The explicit SFFR dynamics can be implemented either numerically or symbolically. Following the latter approach, the developed symbolic code for dynamics modeling, i.e. SPACEMAPLE, and its verification procedure are described, and issues relevant to the development and computation of dynamics models in control algorithms are briefly discussed. Specific dynamic characteristics of SFFRs compared to fixed-base manipulators are pointed out. |
en |
heal.publisher |
VSP BV |
en |
heal.journalName |
Advanced Robotics |
en |
dc.identifier.doi |
10.1163/156855304322758033 |
en |
dc.identifier.isi |
ISI:000220665300006 |
en |
dc.identifier.volume |
18 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
223 |
en |
dc.identifier.epage |
244 |
en |