dc.contributor.author |
Skoundrianos, EN |
en |
dc.contributor.author |
Tzafestas, SG |
en |
dc.date.accessioned |
2014-03-01T01:20:31Z |
|
dc.date.available |
2014-03-01T01:20:31Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.issn |
1070-9932 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/15944 |
|
dc.subject |
Change Detection |
en |
dc.subject |
Fault Detection |
en |
dc.subject |
Fault Detection and Diagnosis |
en |
dc.subject |
Fault Detection and Isolation |
en |
dc.subject |
Fault Diagnosis |
en |
dc.subject |
Knowledge Base |
en |
dc.subject |
Mathematical Model |
en |
dc.subject |
Mobile Robot |
en |
dc.subject |
Model Error |
en |
dc.subject |
Process Model |
en |
dc.subject |
Residual Generation |
en |
dc.subject |
Input Output |
en |
dc.subject |
Neural Network |
en |
dc.subject.classification |
Automation & Control Systems |
en |
dc.subject.classification |
Robotics |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Condition monitoring |
en |
dc.subject.other |
Control system synthesis |
en |
dc.subject.other |
Decision theory |
en |
dc.subject.other |
Fuzzy control |
en |
dc.subject.other |
Manipulators |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Neural networks |
en |
dc.subject.other |
Nonlinear control systems |
en |
dc.subject.other |
Signal detection |
en |
dc.subject.other |
Speed control |
en |
dc.subject.other |
Wheels |
en |
dc.subject.other |
Change detection algorithms |
en |
dc.subject.other |
Decision mechanism |
en |
dc.subject.other |
Fault detection |
en |
dc.subject.other |
Fault diagnosis |
en |
dc.subject.other |
Local model networks |
en |
dc.subject.other |
Nonlinear relationship |
en |
dc.subject.other |
Plant modeling |
en |
dc.subject.other |
Residual evaluation |
en |
dc.subject.other |
Mobile robots |
en |
dc.title |
Finding fault |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1109/MRA.2004.1337829 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/MRA.2004.1337829 |
en |
heal.language |
English |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
The combination of local model networks for modeling and change-detection algorithms for residual creation was applied to the wheels subsystem of a mobile robot. It was found that the method works quickly and efficiently and that false alarms are avoided. The success of the method was based on the performance of the modeling process. This made the method a very efficient one because of the large repertory of existing and well-studied modeling techniques. |
en |
heal.publisher |
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
en |
heal.journalName |
IEEE Robotics and Automation Magazine |
en |
dc.identifier.doi |
10.1109/MRA.2004.1337829 |
en |
dc.identifier.isi |
ISI:000224038300011 |
en |
dc.identifier.volume |
11 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
83 |
en |
dc.identifier.epage |
90 |
en |