dc.contributor.author |
Papadopoulos, V |
en |
dc.contributor.author |
Papadrakakis, M |
en |
dc.date.accessioned |
2014-03-01T01:20:32Z |
|
dc.date.available |
2014-03-01T01:20:32Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.issn |
0733-9399 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/15948 |
|
dc.subject |
finite elements |
en |
dc.subject |
imperfection |
en |
dc.subject |
stochastic processes |
en |
dc.subject |
panels |
en |
dc.subject.classification |
Engineering, Mechanical |
en |
dc.subject.other |
Buckling |
en |
dc.subject.other |
Monte Carlo methods |
en |
dc.subject.other |
Numerical analysis |
en |
dc.subject.other |
Problem solving |
en |
dc.subject.other |
Random processes |
en |
dc.subject.other |
Stiffness matrix |
en |
dc.subject.other |
Average methods |
en |
dc.subject.other |
Cylindrical panels |
en |
dc.subject.other |
Stochastic finite-element analysis |
en |
dc.subject.other |
Finite element method |
en |
dc.subject.other |
finite element analysis |
en |
dc.subject.other |
shell |
en |
dc.title |
Finite-element analysis of cylindrical panels with random initial imperfections |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1061/(ASCE)0733-9399(2004)130:8(867) |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1061/(ASCE)0733-9399(2004)130:8(867) |
en |
heal.language |
English |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
Stochastic finite-element analysis of shells is performed using the spectral representation method for the description of the random fields in conjunction with the local average method for the formulation of the stochastic stiffness matrix of the elements. A stochastic formulation of the nonlinear triangular composites facet triangular shell element is implemented for the stability analysis of cylindrical panels with random initial imperfections. The imperfections are described as a two-dimensional univariate homogeneous stochastic field. The elastic modulus and the shell thickness are also described as two-dimensional uni-variate homogeneous stochastic fields. The variability of the limit load of the cylindrical panel is then computed using the Monte Carlo simulation. Useful conclusions for the buckling behavior of cylindrical panels with random initial imperfections are derived from the numerical tests presented in this paper. These tests also demonstrate the applicability of the proposed methodology in realistic problems. © ASCE. |
en |
heal.publisher |
ASCE-AMER SOC CIVIL ENGINEERS |
en |
heal.journalName |
Journal of Engineering Mechanics |
en |
dc.identifier.doi |
10.1061/(ASCE)0733-9399(2004)130:8(867) |
en |
dc.identifier.isi |
ISI:000223001200001 |
en |
dc.identifier.volume |
130 |
en |
dc.identifier.issue |
8 |
en |
dc.identifier.spage |
867 |
en |
dc.identifier.epage |
876 |
en |