HEAL DSpace

Gas turbine component fault detection from a limited number of measurements

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Mathioudakis, K en
dc.contributor.author Kamboukos, Ph en
dc.contributor.author Stamatis, A en
dc.date.accessioned 2014-03-01T01:20:32Z
dc.date.available 2014-03-01T01:20:32Z
dc.date.issued 2004 en
dc.identifier.issn 0957-6509 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/15955
dc.subject Faults en
dc.subject Gas path analysis en
dc.subject Gas turbine diagnostics en
dc.subject Health parameters en
dc.subject Onboard en
dc.subject Turbofan en
dc.subject.classification Engineering, Mechanical en
dc.subject.other Aircraft en
dc.subject.other Engines en
dc.subject.other Machine components en
dc.subject.other Nonlinear systems en
dc.subject.other Optimization en
dc.subject.other Engine components en
dc.subject.other Engine models en
dc.subject.other Fault diagnosis en
dc.subject.other Non-linear engine models en
dc.subject.other Gas turbines en
dc.subject.other aircraft en
dc.subject.other fault detection en
dc.subject.other gas turbine en
dc.title Gas turbine component fault detection from a limited number of measurements en
heal.type journalArticle en
heal.identifier.primary 10.1243/0957650042584302 en
heal.identifier.secondary http://dx.doi.org/10.1243/0957650042584302 en
heal.language English en
heal.publicationDate 2004 en
heal.abstract A method for detecting faults in the components of gas turbines, based on the use of non-linear engine models and optimization techniques, is presented. The method determines deviations in mass flow capacity and efficiency of individual engine components through minimization of appropriate cost function, formulated such that measurements are matched in an optimum way. Component performance deviations are expressed through appropriate modification factors, which are used as health parameters. The modification factors are coupled to a non-linear engine performance model and can represent different health conditions of the engine. The problem of fault diagnosis is formulated as the problem of determining the values of these factors from a given set of measurement data. The novel aspect of the method presented in this paper is that it can be used to determine health factors that are less, equal or larger in number than the available performance measurements. When measurements are fewer than the parameters to be determined, solutions are derived using an approach of the maximum likelihood type. It is demonstrated than such a solution can provide successful diagnosis for the majority of fault types expected to occur in an engine. The method presented is substantiated by application to a large bypass ratio, partially mixed, turbofan, typical of the large civil aircraft engine configuration in today's aircrafts. An extensive set of component faults is studied, representing malfunctions expected to occur in practice. The method is shown to perform successfully in fault identification over this set, using a limited number of measurements representative of current onboard instrumentation. © IMechE 2004. en
heal.publisher PROFESSIONAL ENGINEERING PUBLISHING LTD en
heal.journalName Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy en
dc.identifier.doi 10.1243/0957650042584302 en
dc.identifier.isi ISI:000228766200006 en
dc.identifier.volume 218 en
dc.identifier.issue 8 en
dc.identifier.spage 609 en
dc.identifier.epage 618 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής